Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Object dynamics prediction based on autoregressive model on a cylinder

Keywords:

V.R. Krasheninnikov – Dr. Sc. (Eng.), Professor, Head of Department «Applied Mathematics and Informatics», Ulyanovsk State Technical University E-mail: kvr@ulstu.ru Yu.E. Kuvayskova – Ph. D. (Eng.), Associate Professor, Department «Applied Mathematics and Informatics», Ulyanovsk State Technical University E-mail: u.kuvaiskova@mail.ru


To provide prompt response in case of technical object emergency accurate prediction of its condition is necessary. In this paper, we suggest prediction based on autoregressive models of a process or an image on a cylinder. These models provide higher accuracy prediction objects with quasi-periodic dynamics in comparison with classical approaches. The effectiveness of such a model is shown on the example of predicting the dynamics of the compressor vibration process. It is shown that accuracy of prediction at the use of the offered models rises more than in 1,5 time as compared to the classic models of temporal rows.
References:

 

  1. Kljachkin V.N., Kuvajjskova JU.E., Bubyr D.S. Prognozirovanie sostojanija obekta s ispolzovaniem sistem vremennykh rjadov // Radiotekhnika. 2015. № 6. S. 45−47.
  2. Kuvajjskova JU.E., Kljachkin V.N., Bubyr D.S. Prognozirovanie sostojanija tekhnicheskogo obekta na osnove monitoringa ego parametrov // Trudy XII Vseros. soveshhanija po problemam upravlenija VSPU-2014. Institut problem upravlenija im. V.A. Trapeznikova RAN. 2014. S. 7616−7626.
  3. Kljachkin V.N., Kuvajjskova JU.E., Aljoshina A.A., Kravcov JU.A. Informacionno-matematicheskaja sistema rannego preduprezhdenija ob avarijjnojj situacii // Izvestija Samarskogo nauchnogo centra RAN. 2013. № 4(4). S. 919−923.
  4. Kuvajjskova JU.E., Aljoshina A.A. Povyshenie ehffektivnosti sistemy upravlenija tekhnicheskimi obektami pri ispolzovanii adaptivnogo dinamicheskogo regressionnogo modelirovanija vremennykh rjadov // Avtomatizacija processov upravlenija. 2013. № 4 (34). S. 77−83.
  5. Kuvajjskova JU.E., Aljoshina A.A. Programmnyjj kompleks modeli-rovanija i prognozirovanija sistemy vremennykh rjadov // Vestnik Uljanovskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. № 2 (62). S. 24−27.
  6. Valeev S.G. Regressionnoe modelirovanie pri obrabotke nabljudenijj. M.: Nauka. 1991. 272 s.
  7. Jenkins G.M., Watts D.G. Spectral Analysis and Its Application. San Francisco: Golden-Day. 1968. 525 p.
  8. Boks Dzh., Dzhenkins G. Analiz vremennykh rjadov. Prognoz i upravlenie. M.: Mir. 1974. 242 s.
  9. Montgomery D.C., Johnson L.A., Gardiner J.S. Forecasting and Time Series Analysis. New York: Mc Graw-Hill. 1990. 394 p.
  10. Krasheninnikov V.R., Kalinov D.V., Pankratov Yu.G. Spiral Autoregressive Model of a Quasiperiodic Signal // Pattern Recognition and Image Analysis. V. 11. № 1. 2001. P. 211−213.
  11. Krasheninnikov V.R., Kalinov D.V. Avtoregressionnaja model kvaziperiodicheskogo signala, svjazannaja s izobrazheniem na cilindre // Vestnik Uljanovskogo gosudarstvennogo tekhnicheskogo universiteta. 2000. № 3. S. 4−10.
  12. Krasheninnikov V.R. Correlation analysis and synthesis of random field wave models // Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015. T. 25. № 1. S. 41−46.
  13. Krasheninnikov V.R., Kuvajjskova JU.E. Opisanie dinamiki tekhnicheskogo obekta na osnove avtoregressionnykh modelejj na cilindre // Doklady Mezhdunar. konf. «Radioehlektronnye ustrojjstva i sistemy dlja infokommunikacionnykh tekhnologijj» (REDS-2016). 2016. T. 1. S. 210−215.

 

June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio