Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Antenna Technologies for High Precision GNSS Positioning

Keywords:

D. V. Tatarnikov – Dr.Sc. (Eng.), Professor, Department of Radiophysics, Antennas and Microwave Technique, Moscow Aviation Insti-tute (National Research University); Deputy Chief of Perspective Designs Department, Topcon Positioning Systems, LLC (Moscow). E-mail: DTatarnicov@topcon.com A. V. Astakhov – Ph.D. (Eng.), Leading Engineer, Topcon Positioning Systems, LLC (Moscow); Associate Professor, Department of Radiophysics, Antennas and Microwave Technique, Moscow Aviation Institute (National Research University) A. P. Stepanenko – Leading Engineer, Topcon Positioning Systems, LLC (Moscow) P. P. Shamatulsky – Engineer, Topcon Positioning Systems, LLC (Moscow) S. N. Emelyanov – Manager of Antennae Projects, Engineer, Topcon Positioning Systems, LLC (Moscow)


Currently, typical error of high precision positioning with the Global Navigation Satellite Systems (GNSS) is of the order of ±1…2 cm in real time and of 1…2 mm in post-processing. The technique is widely employed in geodesy, land survey and automated machines for construction and agriculture. In open sky environments the major error contributions are unavoidable reflections of the direct satellite signals from the terrain that is underneath the user antenna. To decrease the error, antenna is to have decreased gain for directions below the local horizon. As opposed to consumer electronics, antennas for high precision applications are to have the smallest noise factor possible to support the ambiguity fix in Real Time Kinematic (RTK) positioning. This, along with the common trend in size reduction, causes noticeable competition at the market. The biggest portion of the paper is an overview of the authors\' experience in high precision antennas developments. Multiple references to other sources are provided for broader coverage. Microstrip patch antennas have been employed at earlier stages of the technology. With the GNSS spectrum expansion, ceramic substrates thickness has become noticeable. To avoid the weight increase along with the manufacturing complications, artificial dielectric substrates have been suggested in the form of light weight periodic metal structures. Other antenna elements like helices and spirals are also discussed. Flat metal ground plane of about half the wavelength size is one of the most common arrangements. For the base stations with about 30 dB of multipath suppression, Choke Ring ground planes are employed. The natural drawback of the Choke Ring structure is antenna gain decrease for low elevated satellites. To improve the gain, convex impedance ground planes have been suggested. The ground planes employ straight pins structure instead of the choke grooves to improve the frequency response. Reference station antennas are to provide the multipath suppression reaching that of the base station while having much lesser weight and size. Newly developed antenna with a semitransparent ground plane and a special impedance structure underneath pos-sesses sensitivity to the near field multipath at the level below 1 mm. Compact antennas capable to provide with multipath suppression while not employing a ground plane have been suggested. Anti-antenna stack, resonant helices and a combination of an electric (wire) and a magnetic (patch) antennas are of the kinds. The main features of the antennas for automated machines are discussed. Methods to decrease antenna sensitivity to the machine body are shown. The paper concludes with newly developed antennas capable to provide with millimeter precision of positioning in real time. An-tennas possess a cutoff pattern that is the antenna gain is smooth and consistent for the direction in top semi-sphere with sharp drop while crossing the local horizon. Moderately compact antennas suitable for practical positioning have been developed. With the antennas, it is no longer multipath but rather the thermal noise that is the largest error source. Smoothing the noise in real time claims that special adjustments of positioning algorithms are to be performed.
References:

 

  1. Serapinas B.B. Globalnye sistemy pozicionirovanija. M.: IKF «Katalog». 2002.
  2. Understanding GPS. Principles and Applications / Ed. E.D. Kaplan. 2nd ed. Artech House. 2006.
  3. Leick A., Rapoport L., Tatarnikov D. GPS Satellite Surveying. 4th ed. Wiley. 2015.
  4. Boriskin A.D., Vejjcel A.V., Vejjcel V.A., ZHodzishskijj M.I., Miljutin D.S. Apparatura vysokotochnogo pozicionirovanija po signalam globalnykh navigacionnykh sputnikovykh sistem: Priemniki-potrebiteli navigacionnojj informacii / Pod red. M.I. ZHodzishskogo. M.: MAI-Print. 2010.
  5. Vejjcel A.V., Vejjcel V.A., Tatarnikov D.V. Apparatura vysokotochnogo pozicionirovanija po signalam globalnykh navigacionnykh sputnikovykh sistem: Vysokotochnye antenny. Specialnye metody povyshenija tochnosti pozicionirovanija / Pod red. M.I. ZHodzishskogo. M.: MAI-Print. 2010.
  6. Van Trees H.L. Optimum Array Processing. Wiley. 2002.
  7. Mader G.L. GPS Antenna Calibration at the National Geodetic Survey // GPS Solutions. 1999. V. 3. № 1. P. 50–58.
  8. Wubbena G., Schmitz M., Menge F., Boder V., Seeber G. Automated Absolute Field calibration of GPS Antennas in Real Time // Proc. ION GPS 2000, Institute of Navigation, Salt Lake City, UT. P. 2512–2522.
  9. Lopez A.R. GPS Landing System Reference Antenna // IEEE AP Magazine. 2010. V. 52. № 1. P. 104–113.
  10. Voskresenskijj D.I., Filippov V.S. Pechatnye izluchateli // Antenny. Sb. statejj. Vyp. 32 / pod. red. D.I. Voskresenskogo. M.: Radio i svjaz. 1985. S. 4–17.
  11. Filippov V.S. Matematicheskaja model i rezultaty issledovanija kharakteristik pechatnykh izluchatelejj v ploskikh FAR // Antenny. Sb. statejj. Vyp. 32 / pod. red. D.I. Voskresenskogo. M.: Radio i svjaz. 1985. S. 17–63.
  12. Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny. M.: Radio i svjaz. 1986.
  13. Microstrip Antennas / Ed. D.M. Pozar, D.H. Schaubert. N.Y.: IEEE Press. 1995.
  14. CHebyshev V.V. Mikropoloskovye antenny v mnogoslojjnykh sredakh. M.: Radiotekhnika. 2007.
  15. Waterhouse R.B. Microstrip Patch Antennas: A Designer Guide. Springer Science. 2003.
  16. Garg R., Bhartia P., BahlI., Ittipiboon A. Microstrip Antenna Design Handbook. Artech House. 2001.
  17. Lier E., Jacobsen K. Rectangular Mictrostrip Patch Antennas with Infinite and Finite Ground Plane Dimensions // IEEE Trans. on Antennas Propag. 1983. V. 31. № 6. P. 978–984.
  18. Basilio L.I., Chen R.L., Williams J.T., Jackson D.R. A New Planar Dual-Band GPS Antenna Designed for Reduced Susceptibility to Low-Angle Multipath // IEEE Trans. on Antennas Propag. 2007. V. 55. № 8. P. 2358–2366.
  19. Boccia L., Amendola G., Di Massa G. Performance Evaluation of Shorted Annular Patch Antennas for High-Precision GPS Systems // IET Microw. Antennas Propag. 2007. V. 1. № 2. P. 465–471.
  20. Rao B.R., Kunysz W., Fante P., McDonald K. GPS/GNSS Antennas. Artech House. 2013.
  21. Tatarnikov D.V. Plastinchatye antenny s podlozhkami iz iskusstvennykh diehlektrikov // Antenny. 2008. № 1(128). S. 35–45.
  22. Tatarnikov D. Enhanced Bandwidth Patch Antennas with Artificial Dielectrics Substrates for High Precision Satellite Positioning // IEEE International Workshop on Antenna Technology, IWAT 2009. March 2–4, 2009, Santa Monica, CA, USA.
  23. Pat. 1684381 B1 EP EC. Patch antenna with comb substrate. / Tatarnikov D., Astakhov A., Shamatulsky P., Soutiaguine I., Stepanenko A. 2008 / Pat. 7,710,324 B2 US. 2010.
  24. Tatarnikov D., Astakhov A., Stepanenko A., Shamatulsky P. Patch Antenna With Capacitive Elements. Patent US 8,446,322 B2, 2013.
  25. Tatarnikov D., Stepanenko A., Astakhov A. Compact Dual-Frequency Patch Antenna. Patent US 9,184,504 B2, 2015.
  26. Tranquilla J.M., Best S.R. A Study of the Quadrifilar Helix Antenna for Global Positioning System (GPS) Applications // IEEE Trans. on Antennas Propag. 1990. V. 38. № 10. P. 1545–1550.
  27. Counselman C.C., Steinbrecher D.H. Circularly Polarized Antenna for Satellite Positioning Systems. Patent US 4,647,942, 1987.
  28. Yang Fan, Rahmat-Samii Yahya. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications // IEEE Trans. on Antennas Propag. 2003. V. 51. № 10. P. 2691–2703.
  29. Pat. № 2060575 S1 RF. Spiralnaja antenna / Enjutin G.A., Matveev I.N., Pavlov N.A., Solovev A.M., Timoshin V.G. 1996.
  30. Popugaev A.E. Razrabotka GNSS antenn v institute intergalnykh skhem (IIS) imeni Fraungofera // Interehkspo Geo-Sibir. 2010. № 5. S. 83–89.
  31. Pat. № 2380799 RF. Kompaktnaja antenna krugovojj poljarizacii s rasshirennojj polosojj chastot / Tatarnikov D.V., Stepanenko A.P., Astakhov A.V., Filippov V.S. 2010 / Pat. 2335316 B1 EP. 2013 / Pat. 8,723,731 B2 US. 2014.
  32. Tatarnikov D.V., Stepanenko A.P., Astakhov A.V. SHirokopolosnye malogabaritnye plastinchatye antenny obemnogo tipa // Antenny. 2009. № 3. 2009. S. 52–58.
  33. Pat. 8624792 B2 US. Antenna Device for Transmitting and Receiving Electromagnetic Signals /  Popugaev A., Wansch R. 2014.
  34. Li R.L., DeJean G., Tentzenis M.M., Papapolymerou J., Laskar J. Radiation-Pattern Improvement of Patch Antennas on a Large-Size Substrate Using a Compact Soft-Surface Structure and Its Realization on LTCC Multilayer Technology // IEEE Trans. on Antennas Propag. 2005. V. 53. № 1. P. 200–208.
  35. Pat. 6049309 US. Microstrip Antenna with an Edge Ground Structure / Timoshin V.G., Soloviev A.M. 2000.
  36. Pat. 5986615 US. Antenna with Ground Plane Having Cutouts / Westfall B.G., Stephenson K.B. 1999.
  37. Maqsood M., Gao S., Brown T.W.C., Unwin M., Van Steenwijk R., Xu J.D. A Compact Multipath Mitigating Ground Plane for Multiband GNSS Antennas // IEEE Trans. on Antennas Propag. 2013. V. 61. № 5. P. 2775–2782.
  38. Tranquilla J.M., Carr J.P., Al-Rizzo H.M. Analysis of a Choke Ring Ground Plane for Multipath Control in Global Positioning System (GPS) Applications // IEEE Trans. on Antennas Propag. 1994. V. 42. № 7. P. 905–911.
  39. Tatarnikov D.V. EHkrany antenn vysokotochnojj geodezii po signalam globalnykh navigacionnykh sputnikovykh sistem. CHast 1. Idealno provodjashhie i impedansnye ehkrany // Antenny. 2008. № 4(131). S. 6–19.
  40. Tatarnikov D.V. EHkrany antenn vysokotochnojj geodezii po signalam globalnykh navigacionnykh sputnikovykh sistem. CHast 2. Poluprozrachnye ehkrany iz kompozitnykh materialov // Antenny. 2008. № 6(133). S. 3–13.
  41. Pat. 6278407 US. Dual-Frequency Choke-Ring Ground Planes / Ahsjaee J., Filippov V.S., Soutiaguine I.V., Tatarnikov D.V., Astakhov A.V. 2001.
  42. Astakhov A.V. Antenny i ehkrany priemnikov sistemy sputnikovojj geodezii i navigacii, Diss. na soiskanie uchenojj stepeni k.t.n. M.: MAI. 2000.
  43. Lee Y., Kirchner M., Ganguly S., Suman S. Multiband L5 Capable GPS Antenna with Reduced Backlobes // Proc. ION GNSS 2004, Long Beach, CA, Institute of Navigation. P. 1523–1530.
  44. Pat. 6940457 B2 US. Multifrequency antenna with reduced rear radiation and reception / Lee Y., Ganguly S., Mittra R. 2003.
  45. Pat. 6836247 B2 US. Antenna Structures for Reducing the Effects of Multipath Radio Signals / Soutiaguine I., Tatarnikov D., Astakhov A., Filippov V., Stepanenko A. 2004.
  46. McKinzie W.E., Hurtado R., Klimczak W. Artificial Magnetic Conductor Technology Reduces Size and Weight for Precision GPS Antennas // Proc. ION NTM 2002, Institute of Navigation, San Diego, CA. P. 448–459.
  47. Baracco J.M., Salghetti-Drioli L., De Maagt P. AMC Low ProfileWideband Reference Antenna for GPS and GALILEO Systems // IEEE Trans. on Antennas Propag. 2008. V. 56. № 8. P. 2540–2547.
  48. Bao X.L., Ruvio G., Ammann M.J., John M. A Novel GPS Patch Antenna on a Fractal Hi-Impedance Surface Substrate // IEEE Antennas Wireless Propag. Lett. 2006. № 5. P. 323–326.
  49. Baggen R., Martinez-Vazquez M., Leiss J., Holzwarth S., Salghetti Drioli L., De Maagt P. Low Profile GALILEO Antenna Using EBG Technology // IEEE Trans. on Antennas Propag. 2008. V. 56. № 3. P. 667–674.
  50. Rao B.R., Rosario E.N. Electro-Textile Ground Planes for Multipath and Interference Mitigation in GNSS Antennas Covering 1.1 to 1.6 GHz // Proc. ION GNSS 2011, Institute of Navigation, Portland, OR. P. 732–745.
  51. Sievenpiper D., Zhang L., Broas R.F.J., Alexopoulos N.G., Yablonovitch E. High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band // IEEE Trans. MTT. 1999. V. 47. № 11. P. 2059–2074.
  52. Kunysz W. A Three Dimensional Choke Ring Ground Plane Antenna // Proc. ION GNSS 2003, Institute of Navigation, Portland, OR. P. 1883–1888.
  53. Tatarnikov D., Astakhov A., Stepanenko A. Broadband Convex Impedance Ground Planes for Multi-System GNSS Reference Station Antennas // GPS Solutions. 2011. V. 15. № 2. P. 101–108.
  54. Tatarnikov D., Astakhov A., Stepanenko A. GNSS Reference Station Antenna with Convex Impedance Ground Plane: Basics of Design and Performance Characterization // Proc. ION ITM 2011, Institute of Navigation, San Diego, CA. P. 1240–1245.
  55. Pat. № 2446522 RF. EHkran dlja podavlenija mnogoluchevogo priema signalov i antennaja sistema s takim ehkranom / Tatarnikov D., Stepanenko A., Astakhov A. 2012 / Pat. 8,441,409 B2 US/ 2013.
  56. Pat. 5694136 US. Antenna with R-Card Ground Plane / Westfall B.G. 1997.
  57. Krantz E., Riley S., Large P. The Design and Performance of the Zephyr Geodetic Antenna // Proc. ION GPS 2001, Institute of Navigation, Salt Lake City, UT. P. 1942–1951.
  58. Tatarnikov D. Semi-Transparent Ground Planes Excited by Magnetic Line Current // IEEE Trans. on Antennas Propag. 2012. V. 60. № 6. P. 2843–2852.
  59. Pat. 9048546 B2. Flat Semi-Transparent Ground Plane for Reducing Multipath Reception and Antenna System / Tatarnikov D., Klionovsky K. 2015.
  60. Dilssner F., Seeber G., Wübbena G., Schmitz M. Impact of Near-Field Effects on the GNSS Position Solution // Proc. ION GNSS 2008, Institute of Navigation. P. 612–624.
  61. Walford J. Leica GNSS Reference Antennas White Paper. Heerbrugg, Switzerland: Leica Geosystems AG. 2012.
  62. Tatarnikov D. Topcon Full Wave GNSS Reference Station Antenna with Convex Impedance Ground Plane TPS PN-A5. Topcon Positioning Systems. Whitepaper.
  63. Tatarnikov D., Astahov A., Susi M. Topcon Full Wave GNSS Field Reference Antenna TPS G5-A1. Topcon Positioning Systems. Whitepaper.
  64. Bojjko S.N., Kukharenko A.S., JAskin JU.S. Primenenie ehkrana na osnove metamateriala dlja otsechki mnogoluchevosti antenn sputnikovykh sistem navigacii // Antenny. 2015. № 7. S. 63–69.
  65. Kacenelenbaum B.Z., Sivov A.N. EHlektrodinamika antenn s poluprozrachnymi poverkhnostjami. M.: Nauka. 1989.
  66. Tatarnikov D., Soutiaguine I., Filippov V., Astakhov A., Shamatulksy P. Multipath Mitigation by Conventional Antennas with Ground Planes and Passive Vertical Structures // GPS Solutions. 2005. V. 9. № 3. P. 194–201.
  67. Pat. 9184503 B2. Compact Circular Polarized Antenna System with Reduced Cross-Polarization Component / Tatarnikov D., Astakhov A. 2015.
  68. Kilgus S.C. Resonant Quadrifilar Helix. // IEEE Trans. on Antennas Propag. 1969. V. 17. № 5. P. 349–351.
  69. Pat. № 2483404 RF. Kompaktnaja antennaja sistema dlja umenshenija ehffekta mnogoluchevogo priema signalov s integrirovannym priemnikom / Tatarnikov D.V., Astakhov A.V., SHamatulskijj P.P. 2013 / Pat. 8,842,045 B2 US. 2014.
  70. Tatarnikov D.V., Astakhov A.V. Vysokotochnye antenny Topkon v konture avtomaticheskogo upravlenija stroitelnymi i selskokhozjajjstvennymi mashinami // Tez. dokl. 13-jj Mezhdunar. nauch.-tekhn. konf. «Sistemnyjj analiz, upravlenie i navigacija», 29 ijunja – 6 ijulja 2008 g., Evpatorija, Krym. S. 212.
  71. Tatarnikov D.V. Approximate solutions of diffraction problems in GNSS antenna treatment // Tez. dokl. 11-jj Mezhdunar. nauch.-tekhn. konf. «Sistemnyjj analiz, upravlenie i navigacija», 2–9 ijulja 2006 g., Evpatorija, Krym. S. 139.
  72. Pat. № 2368040 RF. Antennyjj blok dlja globalnojj navigacionnojj sputnikovojj sistemy (GNSS) / Tatarnikov D.V., Astakhov A.V., Emeljanov S.N., Stepanenko A.P. 2009.
  73. Tatarnikov D.V., CHerneckijj I.M. Iskusstvennye prepjatstvija dlja ispytatelnykh poligonov apparatury pozicionirovanija po signalam GPS/GLONASS // Antenny. 2015. № 2. S. 47–54.
  74. Counselman C.C. Multipath-Rejecting GPS Antennas // Proceedings of the IEEE. 1999. V. 87. № 1: P. 86–91.
  75. Tatarnikov D., Astakhov A. Large Impedance Ground Plane Antennas for mm-Accuracy of GNSS Positioning in Real Time // Proc. of PIERS-2013, Stockholm, Sweden. P. 1825–1829.
  76. Tatarnikov D., Astakhov A. Referensnaja antenna GNSS dlja millimetrovojj tochnosti pozicionirovanija v rezhime realnogo vremeni // Antenny. 2016. № 2. S. 57–67.
  77. Tatarnikov D., Astakhov A. Approaching Millimeter Accuracy of GNSS Positioning in Real Time with Large Impedance Ground Plane Antennas // Proc. ION ITM 2014, Institute of Navigation, San Diego, CA. P. 844–848.
  78. Tatarnikov D., Astakhov A. Sfericheskaja antennaja reshetka s P-obraznojj DN i nizkim urovnem tenevogo polja // Sb. dokl. VI Vserossijjskojj konf. «Radiolokacija i radiosvjaz», IREH RAN, 19–22 nojabrja 2012 g. T. 1. S. 3–6.
  79. Tatarnikov D., ChernetskyI. Travelling Wave Antennas with Semitransparent Surfaces for Forming a Cutoff Pattern // Proc. PIERS-2015. P. 1168–1171.
  80. Tatarnikov D., Stepanenko A., Astakhov A. Moderately Compact Helix Antennas with Cutoff Patterns for Millimeter RTK Positioning // GPS Solutions. 2016.
  81. Tatarnikov D.V., CHerneckijj I.M. EHkrany s otsechkojj polja // ZHurnal Radioehletkroniki. 2015. № 10. 1684–1719.

 

June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio