Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Fuzzy decision tree and multilayer neural network for digital modulation recognition

Keywords:

Dam Van Nhich – Post-graduate Student, Department IIST FREC, Moscow Institute of Physics and Technology (State University). E-mail: damvan.nhich@gmail.com


The article solves the problem of digital modulation recognition of radio signals based on the using fuzzy decision tree and multilayer neural network. Recognition performed with the basic types of digital modulation 2-PSK, 4-PSK, 8-PSK, 2-FSK, 8-QAM, 16-QAM, 64-QAM. Features for the entrance in the neural network are cumulants. Performance testing methods carried out on one and the same database. The best result shown by using the multilayer neural network.
References:

 

  1. Su W., Kosinski J.A. Higher-order blind signal feature separation: An enabling technology for battlefield awareness // U.S. Army Cerdec, Ft Monmouth, NJ 07703.NOV 2006. P. 1–7. PDFURL: ADA481532.
  2. Avedjan EH.D., Dam V.N. K vyboru kumuljantnykh priznakov v zadache raspoznavanija vidov cifrovojj moduljacii radiosignalov // Informatizacija i svjaz. 2015. №4. S. 11–15.
  3. Young A.F. Classification of digital modulation types in multipath environments // Master’s Thesis. Naval Postgraduate School, Monterey, CA 93943-5000, California. 2008. P. 1–65.
  4. Wong M.L.D., Nandi A.K. Automatic digital modulation recognition using artificial neural network and genetic algorithm // Signal Processing 84. 2004. P. 351–365.
  5. Nandi A.K., Azzouz E.E. Modulation recognition using artificial neural networks // Signal Processing 56. 1997. P. 165–175.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio