Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Electrically small antennas. Part 2

Keywords:

К.N. Klimov – Dr.Sc. (Eng.), Professor, Leading Research Scientist, JSC «LEMZ R&P Corp.». E-mail: const0@mail.ru А.S. Godin – Engineer, JSC «LEMZ R&P Corp.». E-mail: andrey.godin@gmail.com D.S. Gezha – Heads of Technical Departments, LLC «Metriktest». E-mail: dmitry.gez@gmail.com


Transceiver modules as airborne and terrestrial communications systems for different purposes are becoming increasingly miniaturized. That is why the size reduction of antenna systems is an extremely urgent task. In the first part of this article have been considered the main restrictions on the parameters of electrically small antennas (ESA) and an overview of the main types of electrically small antennas: electric and magnetic dipoles and loops, monopole zigzag meander Wong-King, Best spirals on the sphere, loaded loop antennas and a folded monopoles, Goubau antenna, patch antennas with substrates from materials with a high dielectric and magnetic permeability including metaferrite substrate, sleeve and PIF antennas, loops antennas, vector sensor, antenna based on dielectric resonator, contrawound toroidal helix antenna, transmission line antennas, halo, hula hoop and DDRR antennas [1]. This article describes the following types of antennas: dielectric loaded antennas, meanderline antennas, cage monopole, crossed-field antenna, snyder dipole, loop-coupled loop antennas, multiarm dipole, complementary pair antenna, integrated antenna, antenna in a NIM shell (enviroments of Veselago), fractal antennas, antenna on a chip, random segment antennas, multiple multipoles, switched loop antenna, Thal antenna: one-turn helix on the sphere Chu, Gustafsson antenna.
References:

 

  1. Klimov K.N., Godin A.S., Gezha D.S. EHlektricheskie malye antenny (chast 1) // Uspekhi sovremennojj radiotekhniki. 2016. № 6. S. 47–62.
  2. Wheeler H.A. Fundamental Limitations of Small Antennas // Proc. IRE. Dec. 1947. V. 35. P. 1479–1484.
  3. Schelkunoff S.A., Friis H.T. Antennas–Theory and Practice // John Wiley & Sons. 1952. Section 10.14.
  4. Polk C. Resonance and Supergain Effects in Small Ferromagnetically or Dielectrically Loaded Biconical Antennas // Trans. IRE. Dec. 1959. V. AP-7. P. S414–S423.
  5. Grimes D.M. Miniaturized Resonant Antenna Using Ferrites // J Appl Physics. March 1958. V. 29. P. 401–402.
  6. Galejs J. Dielectric Loading of Electric Dipole Antennas // J Res NBS. Sept.–Oct. 1962. V. 66D. P. 557–562.
  7. Galejs J. Small Electric and Magnetic Antennas with Cores of a Lossy Dielectric // J Res NBS. July–Aug. 1963. V. 67D. P. 445–451.
  8. Wheeler H.A. The Spherical Coil as an Inductor, Shield, or Antenna // Proc IRE. Sept. 1958. V. 46. P. 1595–1602.
  9. Chatterjee R. Dielectric and Dielectric-Loaded Antennas // John Wiley & Sons. 1985. Chap. 7.
  10. Birchfield J.L., Free W.R. Dielectrically Loaded Short Antennas // Trans. IEEE. May 1974. V. AP-22. P. 471–472.
  11. Richmond J.H., Newman E.H. Dielectric Coated Wire Antennas. Radio Sci. Jan. 1976. V. 11. P. 13–20.
  12. Popovicґ B.D., Djordejevicґ A.R., Kircґanski N.M. Simple Method for Analysis of Dielectric-Coated Wire Antennas // Radio Electronic Engineer. March 1981. V. 51. P. 141–145.
  13. Smith M.S. Properties of Dielectrically Loaded Antennas // Proc IEE. Oct. 1977. V. 124. P. 837–839.
  14. James J.R., Schuler A.J., Binham R.F. Reduction of Antenna Dimensions by Dielectric Loading // Electronics Lett. 27, June 1974. V. 10. P. 263–265.
  15. James J.R., Henderson A. Electrically Short Monopole Antennas with Dielectric or Ferrite Coatings // Proc IEE. Sept. 1978. V. 125. P. 793–803.
  16. Fujimoto K. et al. Small Antennas / Research Studies Press. Wiley. 1987. Chap. 3.
  17. King R.W.P., Smith G.S. Antennas in Matter—Fundamentals, Theory, and Applications / MIT Press. 1981. Chap. 8.
  18. Sinha B.P., Saoudy S.A. Rigorous Analysis of Finite Length Insulated Antenna in Air // Trans. IEEE. Aug. 1990. V. AP-38. P. 1253–1258.
  19. Bretones A.R. et al. Time Domain Analysis of Dielectric-Coated Wire Antennas and Scatterers // Trans. IEEE. June 1994. V. AP-42. P. 815–819.
  20. Francavilla L.A. et al. Mode-Matching Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric // Trans. IEEE. Jan. 1999. V. AP-47. P. 179–185.
  21. Janapsatya J., Bialkowski M.E. Reducing the Height of a Circular Array of Monopoles Using Top Hats and Dielectric Coatings // Radio Sci. 2004. V. 39. RS3004.
  22. Kennedy T.F., Long S.A., Williams J.T. Modification and Control of Currents on Monopole Antennas Using Magnetic Bead Loading // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 208–211.
  23. Rashed J., Tai C.-T. A New Class of Resonant Antennas // Trans. IEEE. Sept. 1991. V. AP-39. P. 1428–1430.
  24. Lin C.C., Kuo S.W., Chuang H.R. A 2.4-GHz Printed Meander-Line Antenna for USB-WLAN with Notebook-PC Housing // IEEE Microwave Wireless Component Lett. Sept. 2005. V. 15. P. 546–548.
  25. Chang T.-N., Kuo C.-C. Meander Antenna with Backside Tuning Stubs // Trans. IEEE. April 2005. V. AP-53. P. 1274–1277.
  26. Altshuler E.E. A Monopole Antenna Loaded with a Modified Folded Dipole // Trans. IEEE. July 1993. V. AP-41. P. 871–876.
  27. Best S.R. A Comparison of the Resonant Properties of Small Space-Filling Fractal Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 197–200.
  28. Breakall J.K. et al. A Novel Short AM Monopole Antenna with Low-Loss Matching System // Proc IEEE Broadcast Tech Symp Washington DC. 2002.
  29. Breakall J.K. et al. Testing and Results of a New, Efficient Low-Profile AM Medium Frequency Antenna System // Proc NAB Broadcast Engineering Conf. 2003.
  30. Hansen R.C. Electrically Small, Superdirective, and Superconducting Antennas / Wiley, June 2006.
  31. Kabbary F.M., Hately M.C., Stewart B.G. Maxwell’s Equations and the Crossed-Field Antenna // Electronics Wireless World, March 1989. P. 216–218.
  32. Kabbary F.M., Khattab M., Hately M.C. Extremely Small High Power MW Broadcasting Antennas // Int Broadcasting Convention, 12–16 Sept. 1997. IEE Conf Publ 447. P. 441–431.
  33. Kabbary F.M. et al. Four Egyptian MW Broadcast Crossed-Field-Antennas // Proc NAB Conf Las Vegas April 1999. P. 235–241.
  34. Hately M.C., Kabbary F.M., Khattab M. An Operational MF Broadcast Antenna Using Poynting Vector Synthesis // ICAP. York. IEE Conf. Publ. 333. 1991. P. 645–648.
  35. Smith M.S. Conventional Explanation for «Crossed Field Antenna» // Electronics Lett. 13 Feb. 1992. V. 28. P. 360–361.
  36. Belrose J.S. Characteristics of the CFA Obtained by Numerical and Experimental Modeling // Proc IEEE BTS Symp. 2000.
  37. Belrose J.S. The Crossed Field Antenna-Analyzed by Simulation and Experiment // ICAP-JINA Conf on Antennas and Prop. Davos. 2000.
  38. Hatfield J.B. Magnetic Fields from Displacement Current Densities Generated by the Crossed Field Antenna // IEEE Broadcast Tech Soc 50th Broadcast Symp 28 Sept. 2000. P. 1–3.
  39. U.S. Patent 4479130. Broadband Antennae Employing Coaxial Transmission Line Sections. Snyder R.D. 23 Oct. 1984a.
  40. Snyder R.D. The Snyder Antenna // RF Design Sept.-Oct. 1984. P. 49–51.
  41. U.S. Patent 3,588,905. Wide Range Tunable Transmitting Loop Antenna. Dunlavy J.H.Jr. June 1971.
  42. Barrick D. Miniloop Antenna Operation and Equivalent Circuit // Trans. IEEE. Jan. 1986. V. AP-34. P. 111–114.
  43. Belrose J.S. Electrically Small Transmitting Loops / Part 1. Radcom June 2003. P. 65–67; Part 2. July 2004. P. 88–90.
  44. Belrose J.S. Electrically Small Transmitting Loops // IEEE APS Symp Digest. 2005.
  45. Belrose J.S. Performance Analysis by Experiment and Simulation of Small Tuned Transmitting Loop Antennas // IEEE APS Symp Digest. 2005.
  46. Turner E.M., Richard D.J. Development of an Electrically Small Broadband Antenna // Proc 18th Symp USAF Ant Res Dev Prog Oct. 1968. Allerton, IL.
  47. Schroeder K.G. The Complementary Pair–A Broadband Element Group for Phased Arrays // IEEE AP Conv Rec 1964. P. 128–133.
  48. U.S. Patent 3,449,751. Complementary Pair Antenna Element Groups. Schroeder K.G. 10 June 1969.
  49. Schroeder K.G., Soo Hoo K.M. Electrically Small Complementary Pair (ESCP) with Interelement Coupling // Trans. IEEE. July 1976. V. AP-24. P. 411–418.
  50. Frost A.D. Parametric Amplifi er Antenna // Proc IRE. June 1960. V. 48. P. 1163–1164.
  51. Frost A.D. Parametric Amplifi er Antenna // Trans. IEEE. March 1964. V. AP-12. P. 234–235.
  52. Copeland JR. et al. Antennafi er Arrays // Trans. IEEE. March 1964. V. AP-12. P. 227–233.
  53. Flachenecker G., Meinke H.R. Active Antennas with Transistors // Can Int Electronics Conf Rec Sept. 1967. P. 142–143.
  54. Maclean T.S.M., Ramsdale P.A. Signal/Noise Ratio for Short Integrated Antennas // Electronics Lett. 6 Feb. 1975. V. 11. P. 62–63.
  55. Fanson P.L., Chen K.-M. Instabilities and Resonances of Actively and Passively Loaded Antennas // Trans. IEEE. March 1974. V. AP-22. P. 344–347.
  56. Ziolkowski R.W., Kipple A.D. Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas // Trans. IEEE. Oct. 2003. V. AP-51. P. 2626–2640.
  57. Puente C. et al. Small but Long Koch Fractal Monopole // Electronics Lett. 8 Jan. 1998. V. 34. P. 9–10.
  58. Baliarda C.P., Romeu J., Cardama A. The Koch Monopole: A Small Fractal Antenna // Trans IEEE. Nov. 2000. V. AP-48. P. 1773–1781.
  59. Puente C. et al. Fractal Multiband Antenna Based on the Sierpinski Gasket // Electronics Lett. 4 Jan. 1996. V. 32. P. 1–2.
  60. Baliarda C.P. et al. An Iterative Model for Fractal Antennas: Application to the Sierpinski Gasket Antenna // Trans IEEE. May 2000. V. AP-48. P. 713–719.
  61. Vinoy K.J. et al. Hilbert Curve Fractal Antenna: A Small Resonant Antenna for VHF/UHF Applications // Microwave Optical Tech Lett. 20 May 2001. V. 29. P. 215–219.
  62. Anguera J. et al. The Fractal Hilbert Monopole: A Two-Dimensional Wire // Microwave Optical Tech Ltrs. 20 Jan. 2003. V. 36. P. 102–104.
  63. Cohen N. Fractal Antennas–Part 1 / Commun Q Summer 1995. P. 7–22.
  64. Best S.R. On the Signifi cance of Current Vector Alignment in Establishing the Resonant Frequency of Small Space-Filling Wire Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 201–204.
  65. Zhu J., Engheta N. Peano Antennas // IEEE Ant Wireless Propagation Lett. 2004. V. 3. P. 71–74.
  66. Best S.R., Morrow J.D. The Effectiveness of Space-Filling Fractal Geometry in Lowering Resonant Frequency // IEEE Ant Wireless Propagation Lett. 2002. V. 1. P. 112–115.
  67. Best S.R., Morrow J.D. On the Signifi cance of Current Vector Alignment in Establishing the Resonant Frequency of Small Space-Filling Wire Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 201–204.
  68. Zhu J., Hoorfar A., Engheta N. Bandwidth, Cross-Polarization, and Feed-Point Characteristics of Matched Hilbert Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 2–5.
  69. Guterman J., Moreira A.A., Peixeiro C. Microstrip Fractal Antennas for Multistandard Terminals // IEEE Ant Wireless Propagation Lett. 2004. V. 3. P. 351–354.
  70. Best S.R. On the Multiband Behavior of the Koch Fractal Monopole Antenna // Microwave Optical Tech Lett. 5 Dec. 2002. V. 35. P. 371–374.
  71. Puente C. et al. On the Behavior of the Sierpinski Multiband Fractal Antenna // Trans. IEEE. April 1998. V. AP-46. P. 517–524.
  72. Liang X., Chia M.Y.W. Multiband Characteristics of Two Fractal Antennas // Microwave Optical Tech Lett. 20 Nov. 1999. V. 23. P. 242–245.
  73. Soler J., Puente C., Puerto A. A Dual-Band Bidirectional Multilevel Monopole Antenna // Microwave Optical Tech Lett. 20 Sept. 2002. V. 34. P. 445–448.
  74. Best S.R. A Comparison of the Performance Properties of the Hilbert Curve Fractal and Meander Line Monopole Antennas // Microwave Optical Tech Lett. 20 Nov. 2002. V. 35. P. 258–262.
  75. Best S.R. A Discussion on the Quality Factor of Impedance Matched Electrically Small Wire Antennas // Trans. IEEE. Jan. 2005a. V. AP-53. P. 502–508; correction Jun. 2005. P. 2133.
  76. Courtesy of Choo H., Rogers R.L., Ling H. Design of Electrically Small Wire Antennas Using a Pareto Genetic Algorithm // Trans. IEEE. March 2005. V. AP-53. P. 1038–1046.
  77. Altshuler E.E., Linden D.S. An Ultrawide-Band Impedance-Loaded Genetic Antenna // Trans. IEEE. Nov. 2004. V. AP-52. P. 3147–3150.
  78. Choo H., Rogers R.L., Ling H. Design of Electrically Small Wire Antennas Using a Pareto Genetic Algorithm // Trans. IEEE. March 2005. V. AP-53. P. 1038–1046.
  79. Altshuler E.E. A Method for Matching an Antenna Having a Small Radiation Resistance to a 50-Ohm Line // Trans. IEEE. Sept. 2005. V. AP-53. P. 3086–3089.
  80. Best S.R. A Comparison of the Performance Properties of the Hilbert Curve Fractal and Meander Line Monopole Antennas // Microwave Optical Tech Lett. 20 Nov. 2002. V. 35. P. 258–262.
  81. Best S.R. A Comparison of the Resonant Properties of Small Space-Filling Fractal Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 197–200.
  82. Gonzalez-Arbesu J.M., Blanch S., Romeu J. Are Space-Filling Curves Efficient Small Antennas // IEEE Ant Wireless Propagation Lett. 2003. V. 2. P. 147–150.
  83. Grimes D.M., Grimes C.A. Bandwidth and Q of Antennas Radiating TE and TM Modes // Trans. IEEE. May 1995. V. EMC-37. P. 217–226.
  84. Grimes C.A., Grimes D.M. A Clarifi cation and Extension of Bandwidth and Q of Antennas Radiating Both TE and TM Modes // Trans. IEEE. May 1996. V. EMC-38. P. 201–202.
  85. Grimes D.M., Grimes C.A. Power in Modal Radiation Fields: Limitations of the Complex Poynting Theorem and the Potential for Electrically Small Antennas // J EM Waves Appl. 1997. V. 11. P. 1721–1747.
  86. Grimes D.M., Grimes C.A. Radiation Q of Dipole-Generated Fields // Radio Sci. March–April 1999. V. 34. P. 281–296.
  87. McLean J.S. The Application of the Method of Moments to the Analysis of Electrically-Small «Compound» Antenna // EMC Symp Record Aug. 1995. P. 119–124.
  88. Grimes C.A. et al. Time-Domain Measurement of Antenna Q // Microwave Optical Tech Lett. 20 April 2000. V. 25. P. 95–100.
  89. Grimes C.A. et al. Characterization of a Wideband, Low-Q, Electrically Small Antenna // Microwave Optical Tech Lett. 5 Oct. 2000. V. 27. P. 53–58.
  90. Grimes D.M., Grimes C.A. Minimum Q of Electrically Small Antennas: A Critical Review // Microwave Optical Tech Lett. 5 Feb. 2001. V. 28. P. 172–177.
  91. Collin R.E. Minimum Q of Small Antennas // J EM Waves Appl. 1998. V. 12. P. 1369–1393.
  92. U.S. Patent, 4,809,009. Resonant Antenna. Grimes D.M., Grimes C.A. 28 Feb. 1989.
  93. U.S. Patent 6229494. Radiation Synthesizer Systems and Methods. Merenda J.T. 8 May 2001.
  94. ThaI H.L. New radiation Q limits for spherical wire antennas // IEEE Transactions on Antennas and Propagation. October 2006. V. AP-54. P. 2757–2763.
  95. John L. Volakis, Chi-Chih Chen, Kyohei Fujimoto Small Antennas: Modern Miniaturization Techniques & Applications / McGraw-Hill Professional Publishing. 2010.
  96. Chu L.J. Physical Limitations of Omni-Directional Antennas // J Appl Physics. Dec. 1948. V. 19. P. 1163–1175.
  97. ThaI H.L. Gain and Q boundsJor coupled TM-TE modes // IEEE Transactions on Antennas and Propagation. July 2009. V. AP-57. № 7. P. 1879–1885.
  98. Kwon D.-H. On the Radiation Q and the Gain of Crossed Electric ang Magnetic Dipole Moments // Trans. IEEE. May 2005.  V. AP-53. P. 1681–1687.
  99. Chaloupka H. On the Frequency Bandwidth of Functionally Small Antennas // Proc URSI Symp EM Theory Aug. 1992. P. 266–268.
  100. Kwon D.H. Radiation Q and gain of TM and TE sources in phase-delayed rotated configurations // IEEE Transactions on Antennas and Propagation. August 2008. V. AP- 56. P. 2783–2786.
  101. Pozar D.M. New results for minimum Q, maximum gain, and polarization properties of electrically small arbitrary antennas // EuCAP 2009. Berlin. Germany. March 2009. P. 23–27.
  102. McLean J.S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas // Trans. IEEE. May 1996. V. AP-44. P. 672–676.
  103. Gustafsson M., Sohl C., Kristensson G. Physical limitations on antennas of arbitrary shape // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007. V. 463. № 2086. P. 2589-2607.
  104. Hansen R.C., Collin R.E. A new Chu formula for Q // IEEE Antennas and Propagation Magazine. October 2009. V. 51. № 5 P. 38–41.
  105. Green R.B. The general theory of antenna scattering / Ph.D thesis. The Ohio State University. November 1963.
  106. Thiele G.A., Detweiler P.L., Penno R.P. On the Lower Bound of the Radiation Q for Electrically Small Antennas // Trans. IEEE. June 2003. V. AP-51. P. 1263–1269.
  107. Foltz H.D., McLean J.S. Limits on the radiation Q of electrically small antennas restricted to oblong bounding regions // Proceedings of the IEEE AP-S International Symposium. 11-16 July 1999. V. 4. P. 2702–2705.
  108. Gustafsson M., Sohl C., Kristensson G. Physical limitations on antennas of arbitrary shape // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007. V. 463. № 2086. P. 2589–2607.
  109. Green R.B. The general theory of antenna scattering / Ph.D thesis. The Ohio State Universit. November 1963.
  110. Andersen J.B., Frandsen A. Absorption efficiency of receiving antennas // IEEE Transactions on Antennas and Propagation. September 2005. V. AP-53. P. 2843–2849.
  111. Newton R.G. Scattering Theory of Waves and Particles. 2d ed. / Springer-Verlag. New York. 1982.
  112. Taylor J.R. Scattering theory: The Quantum Theory of Nonrelativistic Collisions / Robert E. Krieger Publishing Company. Malabar. Fa. 1983.
  113. Kleinman R., Senior T. Low frequency scattering by space objects // IEEE Transactions on Aerospace and Electronic Systems. V. AES-11. P. 672–675.
  114. Best S.R. Low Q Electrically Small Linear and Elliptical Polarized Spherical Dipole Antennas // Trans. IEEE. March 2005.  V. AP-53. P. 1047–1053.
  115. Grechikhin A. EHlektricheski malye antenny: vozmozhnosti i zabluzhdenija // Radio. 1992. № 11. S. 8–10.
  116. Grechikhin A.I., Okunev A.G. Issledovanie ehffektivnosti toroidalnykh antenn STNA / V kn.: «Radioehlektronnye i telekommunikacionnye sistemy i ustrojjstva» Mezhvuz. sbornik nauch. trudov. Vyp. 7. N. Novgorod: NGTU. 2001.
  117. Gavrilin A.T., Grechikhin A.I., Proskurjakov D.V. Issledovanie kharakteristik toroidalnojj antenny so vstrechnymi spiralnymi obmotkami // Radiotekhnika. 2001. № 9.
  118. Grechikhin A.T. Toroidalnye antenny // Radio. 2003. № 1. S. 64–66.
  119. Sljusar V. 60 let teorii ehlektricheski malykh antenn // EHlektronika: Nauka, Tekhnologija, Biznes. 2006. № 7. S. 10–19.
  120. Voronov A.A. Primenenie singuljarnykh integralnykh uravnenijj dlja analiza kolcevojj ramochnojj antenny i malootrazhajushhego konformnogo pokrytija obektov // Dis. … k.f.-m.n. Samara: PGUTI. 2009.
  121. Babushkina O.A. Issledovanie perspektivnykh skhemno-konstruktivnykh reshenijj dlja antenno-fidernykh ustrojjstv i filtrov SVCH diapazona // Dis. … k.t.n. SPb.: LEHTI. 2010.
  122. Bojjko S.N., Veselago V.G., Vinogradov E.A., ZHukov A.A. Malogabaritnye antenny na osnove metamaterialov // Antenny. 2012. № 12. S. 32–41.
  123. Knjazev N.S. Issledovanie kharakteristik sfericheskikh rezonatornykh antenn malykh ehlektricheskikh razmerov // Dis. … k.t.n. Ekaterinburg: URFU. 2012.
  124. SHarafiev A.V. Mnogoehlementnye dzhozefsonovskie struktury dlja realizacii vysokolinejjnykh shirokopolosnykh ustrojjstv // Dis. … k.f.-m.n. M.: MGU. 2013.

 

Sept. 2, 2020
Aug. 27, 2020
June 24, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio