Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Peculiarities of the acoustic wave propagation in piezoelectric crystals affected by thermal conductivity effect

Keywords:

N.V. Voronova – Head of Laboratory, Acoustoelectronic and Piezoceramic ELPA Corporation (Moscow). Е-mail: vonavl@mail.ru Yu.V. Puchkov – Engineer-constructor, Acoustoelectronic and Piezoceramic ELPA Corporation (Moscow) V.I. Anisimkin – Dr.Sc. (Phys.-Math.), Chief Research Scientist, Kotelnikov IRE RAS (Moscow)


Using nitrogen, argon, and oxygen as examples the separate and simultaneous action of the physical parameters of the gases and the gas flows on the phase velocity and attenuation of the surface acoustic waves in heated piezoelectric crystals of quartz, lithium niobate, and germanium oxide are studied experimentally. It is shown that the value and shape of the acoustic response depend both on the test gas and the wave sensitivity towards temperature. For gases whose thermal conductivity is less than in air relevant acoustic responses may be minimized by proper selection of the value of the gas flows. Analytical expression describing thermal conductivity response of the acoustic waves is derived.
References:

 

  1. Walsh P.N., Jones T.A. Chemical and biochemical sensors. Part 1 / Sensors. Gopel W.P., Hesse J., Zemel J.N. New York: VCH. 1991. V. 2. P. 529–570.
  2. Symons E.A. Gas Sensors / Sbervegliei G. Ed. London: Kluver. 1992. P. 169–185.
  3. Anisimkin V.I., Penza M., Osipenko V.A., Vasanelli L. Gas thermal conductivity sensor based on SAW // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1995. V. 42. № 6. R. 978.
  4. Anisimkin V.I., Maksimov S.A., Penza M., Vasanelli L. Termokonduktometricheskoe detektirovanie gazov i gazovykh potokov s pomoshhju linijj zaderzhki na poverkhnostnykh akusticheskikh volnakh // ZHTF. 1997. T. 67. № 5. S. 119.
  5. Anisimkin V.I., Zemljanicin M.A., Pjatajjkin I.I. // Nelinejjnyjj Mir. 2015. T.13. № 2. S.62.
  6. Joshi S.G. Flow Sensors Based on Surface Acoustic Waves // Sensors and Actuators. 1994. A44. P. 191–197.
  7. Rebiere D., Dejous C., Pistre J., Aucouturier J-L. Acoustic Wave Devices to Measure Gas Flow: Comparison Between Surface Acoustic Wave (SAW) and Shear Horizontal Acoustic Plate Mode (SH-APM) Oscillators // Sensors and Actuators. 1994. A41–A42. P. 384–388.
  8. Joshi S.G. // IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control. 1991. V. 38. P. 148–154.
  9. Osnovy teploperedachi v aviacionnojj i raketno-kosmicheskojj tekhnike / Pod red. V.K. Koshkina. M.: Mashinostroenie. 1975.
  10. Akusticheskie kristally / Pod red. M.P. SHaskolskojj. M.: Nauka. 1982.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio