Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Neurocomputer approach to the solution of a problem of optimization of reception of information in the channel with variable parameters

Keywords:

Yu.L. Nikolashin – Ph.D. (Eng.), General Director, PJSC “Inteltech” (St. Petersburg). E-mail: intelteh@inteltech.ru P.A. Budko – Ph.D. (Eng.), Professor, Leading Research Scientist, PJSC “Inteltech” (St. Petersburg). E-mail: budko62@mail.ru G.A. Zhukov – Ph.D. (Eng.), Associate Professor, PJSC “Inteltech” (St. Petersburg). E-mail: intelteh@inteltech.ru


A new method of processing of the messages accepted on radio channels of a decameter wave band, realized with use of the device of artificial neural networks, demanding large volume of parallel calculations which carrying out is problematic when using regular computing means is offeredin the article. Expediency of use of the device of artificial neural networks is caused by need of realization of volume computing procedures on neurocomputers in the presence of big massifs entrance, parallel to the arriving information, and also in connection with partial distortion of data on object or decision-making in the conditions of aprioristic uncertainty. It is characteristic in case of the information processing arriving against noise (natural and artificial hindrances) on the channel with variable parameters to which it is possible to carry a decameter radio channel. The tasks of increase in reliability of the accepted information due to creation of the automated radio lines, including with adaptation of the main characteristics of antenna subsystems and a hardware-software complex of communication to an elec-tromagnetic situation in a reception point are solved in the article. The assessment of efficiency of functioning of adaptive compensators of hindrances in the channel with variable parameters is presented. One of the ways of increasing of the efficiency of suppression of hindrances when using multichart digital antenna lattices in the conditions of a feding of a signal (hindrance) on the level (an azimuth and a corner of a place) by formation of a fan of static directional patterns with simultaneous reception and processing of the signals arriving from all channels of paths of the carried reception that allows to realize reception of information with the maximum relation a signal/hindrance at arrival of a hindrance and useful signal from any azimuths. Results of computer modeling on their formation for an eight-level ring antenna lattice with a radius of 10 meters, a step of change of a phase 300 and with a working frequency of 20 MHz are given. The analysis of the received results showed that when forming the of directional patterns will always be such which provides reception of a useful signal with simultaneous suppression of the hindrance coming from any azimuth (in coincident with an azimuth of arrival of a useful signal). Thus for achievement of size of suppression of a hindrance more than 40 dB will be required as show calculations to create about 360 directional patterns with a shift step in 10. In this case the most effective is the parallel analysis of signals with formation of the total message consisting of the blocks of the message which are optimum accepted from the directional patterns corresponding the. The block diagram of the hardware-software complex providing optimization of reception and processing of messages in the channel with variable parameters in the conditions of influence of hindrances in which resultant formation of the message is made with use of character-by-character weight majority addition on the basis of criterion of maximum likelihood is offered. The approximate necessary number in parallel of the carried-out calculations even at small quantity of antenna elements in diversity receptionat realization of the considered method makes more than 100 thousand that is problematic to realize in real time on regular computer systems and demands use of specialized neurocomputers. The offered method allows to carry out modernization existing and to create the new highly effective automated systems of a radio communication and radio monitoring with difficult algorithms of the functioning and information processing which is based on a number of the theorems defining the approximating properties of multilayered neural networks.
References:

 

  1. KHekht-Nilsen R. Nejjrokompjuting: istorija, sostojanie, perspektivy // Otkrytye sistemy. 1998. №4. S. 10–14.
  2. Babkov V.JU., Cikin I.A. Sotovye sistemy mobilnojj svjazi: ucheb. posobie. SPb.: Izdatelstvo Politekhnicheskogo universiteta, 2011. 426 s.
  3. Nikolashin JU.L., Budko P.A., ZHoldasov E.S., ZHukov G.A. Perspektivnye metody povyshenija pomekhoustojjchivosti dekametrovykh radiolinijj // Naukoemkie tekhnologii v kosmicheskikh issledovanijakh Zemli. 2014. T. 6. № 1. S. 30–37.
  4. Fedorenko V.V., Budko P.A., Vershkov N.A.Matematicheskaja model diskretnogo kanala svjazi v uslovijakh vozdejjstvija destabilizirujushhikh faktorov // EHlektronnoe modelirovanie. 1997. № 1. S. 71–76.
  5. Budko P.A. Upravlenie resursami informacionno-telekommunikacionnykh sistem. Metody optimizacii. SPb.: VAS. 2012. 512 s.
  6. Aktivnye fazirovannye antennye reshetki / Pod red. D.I. Voskresenskogo i A.I. Kanashhenkova. M.: Radiotekhnika. 2004. 488 s.
  7. Uidrou B., Stirnz S. Adaptivnaja obrabotka signalov. M.: Radio i svjaz. 1989. 440 s.
  8. Nikolashin JU.L., Kuleshov I.A., Budko P.A., ZHoldasov E.S., ZHukov G.A.SDR radioustrojjstva i kognitivnaja radiosvjaz v dekametrovom diapazone chastot // Naukoemkie tekhnologii v kosmicheskikh issledovanijakh Zemli. 2015. T. 7. № 1. S. 20–31.
  9. Budko P.A., ZHoldasov E.S., ZHukov G.A., Budko N.P.SDR-tekhnologii i novye principy priema soobshhenijj v simpleksnykh radiolinijakh // Naukoemkie tekhnologii v kosmicheskikh issledovanijakh Zemli. 2013. T. 5. № 1. S. 34–38.
  10. Nikolashin JU.L., Miroshnikov V.I., Budko P.A., ZHukov G.A. Kognitivnaja sistema svjazi i vlijanie ispolzovanija dannykh monitoringa na pomekhoustojjchivost sverkhuzkopolosnykh dekametrovykh radiolinijj // Morskaja radioehlektronika. 2015. № 2(52). S. 16–22.
  11. Nikolashin JU.L., Budko P.A., ZHukov G.A.Povyshenie ehffektivnosti funkcionirovanija radiolinijj s psevdosluchajjnojj perestrojjkojj rabochikh chastot / Sb. dokladov III Mezhdunar. nauch.-tekhn. konferencii «Radiotekhnika, ehlektronika i svjaz» (g. Omsk, 6–8 oktjabrja 2015 g.). Omsk: Izdatelskijj dom «Nauka». 2015. S. 126–137.
  12. Budko P.A., Risman O.V. Mnogourovnevyjj sintez informacionno-telekommunikacionnykh sistem. Matematicheskie modeli i metody optimizacii. SPb.: VAS. 2011. 476 s.
  13. Kirsanov EH.A., Sirota A.A. Obrabotka informacii v prostranstvenno-raspredelennykh sistemakh radiomonitoringa: Statisticheskijj i nejjrosetevojj podkhody. M.: Fizmatlit. 2012. 344 s.
  14. Fomin L.A., Budko P.A., SHlaev D.V.Nejjrofiziologicheskaja model upravlenija raspredelennojj sistemojj // Nejjrokompjutery: razrabotka, primenenie. 2008. № 7. S. 62–68.
  15. JAzyk skhem radikalov: metody i algoritmy / Pod red. A.V. CHechkina i A.V. Rozhnova. // Ser. Biblioteka zhurnala «Nejjrokompjutery: razrabotka, primenenie». Intellektualizacija slozhnykh sistem. M.: Radiotekhnika. 2008. 96 s.
  16. Tikhomirov N.M., Mankov A.JU., Semencov N.V. KV radiosvjaz: sostojanie, osobennosti primenenija i perspektivy razvitija // Teorija i tekhnika radiosvjazi. 2011. № 4. S. 62–70.
  17. Fedorenko V.V., Budko P.A.Pomekhoustojjchivost nekogerentnogo priema iskazhennykh v apparature signalov pri vozdejjstvii sosredotochennojj pomekhi // Izv. vuzov. Radioehlektronika. 1997. № 3. S. 63–67.
  18. Budko P.A. Povyshenie ehffektivnosti radiolinijj pri adaptivnom upravlenii apparaturnym i chastotnym resursami na uzlakh svjazi // Radiotekhnika. 2001. № 8. S. 28–31.
  19. Grigorev L.N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannykh antennykh reshetkakh. M.: Radiotekhnika. 2010. 144 s.
  20. Bannikov I.M., Saltykov O.V. Cifrovoe formirovanie diagrammy napravlennosti antenn SGD // Tekhnika radiosvjazi.2008. Vyp. 13. S. 97–112.
  21. Kukes I.S., Starik M.E. Osnovy radiopelengacii. M.: Sov. radio. 1964. 640 s.
  22. Andronov I.S., Fink L.M. Peredacha diskretnykh soobshhenijj po parallelnym kanalam. M.: Sov. radio. 1976. 408 s.
  23. Sikarev A.A., Falko A.I. Optimalnyjj priem diskretnykh soobshhenijj. M.: Svjaz. 1978. 328 s.
  24. Nikolashin JU.L. Budko P.A., ZHoldasov E.S., ZHukov G.A. Povyshenie ehffektivnosti funkcionirovanija dekametrovykh radiolinijj // Telekommunikacii i transport (T-Comm). 2015. № 2. S. 4–10.
  25. Budko P.A., Osipov D.L., Mironov V.A.Minimaksnaja zadacha analiza pomekhozashhishhennosti sistemy radiosvjazi pri rezhekcii porazhennogo uchastka spektra signala // Izv. vuzov. EHlektronika. 2003. № 1. S. 96–96.
  26. Budko P.A., Osipov D.L. Optimizacija rezhekcii sosredotochennojj po spektru pomekhi v RTS so slozhnymi signalami // Fizika volnovykh processov i radiotekhnicheskie sistemy. 2003. № 1. S. 69–72.
  27. KHvorostenko N.P. Statisticheskaja teorija demoduljacii diskretnykh signalov. M.: Svjaz. 1968. 335 s.
  28. ZHukov G.A. EHffektivnost sovmestnogo ispolzovanija razlichnykh metodov obrabotki signalov pri prieme po parallelnym kanalam // Tekhnika sredstv svjazi. Ser. TPS. 1984. Vyp. 6. S. 66–74.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio