Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Spin-polarized transport in nanostructure based on ferromagnetic manganite-perovskite

Keywords:

D.O. Petrova - Post-graduate Student, Kaluga Tsiolkovski State University K.G. Nikiforov - Dr. Sc. (Phys.-Math.), Professor, Kaluga Tsiolkovski State University. Е-mail: kgn@kspu.kaluga.ru


Computer simulation was carried out on the basis of the tested system of computer mathematics Mathcad. The model of spin-polarized transport was developed using the potential barrier of the tunnel thickness as spin filter generated by a ferromagnetic nanolayer. Simulations of the density of spin polarized tunneling currents in p-La0,67Ca0,33MnO3 /n-SrZrO3 structure were carried out in the ferromagnetic phase (250 K) for the range of the ferromagnetic barrier layer thickness d = 2…50 nm and applied electric field E = 107…2∙108 V/m. The polarization by spin of the tunnel current is close to 100% and can be explained by the fact that the exchange splitting of the conductivity band of ferromagnetic semiconductor provides various energy barriers φB for the tunneling electrons of different spin orientation. It was shown that for the field and potential barrier thickness such that Ed > φB the “effective” tunneling distance is less than the barrier d thickness. Our simulation results demonstrate that it is possible to use this nanostructure as an effective spin filter.
References:

 

  1. Zutic I., Fabian J., Das Sarma S. Spintronics: Fundamentals and applications // Rev. Mod. Phys. 2004. V. 76. № 2. P. 323–410.
  2. Schmidt G. Concepts for spin injection into semiconductors – a review // J. Phys. D: Appl. Phys. 2005. V. 38. № 7. P. R107–R122.
  3. Borukhovich A.S. Osobennosti kvantovogo tunnelirovanija v multislojakh i geterostrukturakh, soderzhashhikh ferromagnitnye poluprovodniki // UFN. 1999. T. 169. № 7. S. 737–751.
  4. Bamburov V.G., Borukhovich A.S., Samokhvalov A.A.Vvedenie v fiziko-khimiju ferromagnitnykh poluprovodnikov. M.: Metallurgija. 1988. 205 s.
  5. Nikiforov K.G. Magnetically ordered multinary semiconductors // Progr. Cryst. Crowth Charact. Mater. 1999. V. 39. № 1–4. P. 1–104.
  6. Nikiforov K.G. Mnogokomponentnye magnitnye poluprovodniki. Kaluga: Izd-vo KGPU. 2000. 176 s.
  7. Antonov A.V., Nikiforov K.G. Modelirovanie spintronnykh struktur CdCr2Se4/CdIn2S4 // Issledovano v Rossii. 2008. T. 11. S. 1008–1017. http://zhurnal.ape.relarn.ru/articles/2008/091.pdf.
  8. Antonov A.V., Nikiforov K.G. Spin-poljarizovannyjj transport v geterostrukture HgCr2Se4/CdIn2S4// Fundamentalnye problemy radioehlektronnogo i optoehlektronnogo priborostroenija. 2008. T. 8. № 1. S. 206–209.
  9. Antonov A.V., Nikiforov K.G., Bondarenko G.G.Processy spinovogo transporta v nanostrukturakh «ferromagnitnyjj poluprovodnik – nemagnitnyjj poluprovodnik» // Perspektivnye materialy. 2010. № 4. S. 21–25.
  10. Volkov N.V.Spintronika: magnitnye tunnelnye struktury na osnove manganitov // UFN. 2012. T. 182. № 3. S. 263–285.
  11. Von Helmolt R., Wecker J., Holzapfel B., Schultz L., Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOxferromagnetic films // Phys. Rev. Lett. 1993. V. 71. № 14. P. 2331–2333.
  12. McCormack M., Jin S., Tiefel T.H., Fleming R.M., Phillips J.M., Ramesh R. Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films // Appl. Phys. Lett. 1994. V. 64. № 22. P. 3045–3047.
  13. Coey J.M.D., Viret M., von Molnar S. Mixed-valence manganites // Adv. Phys. 1999. V. 48. № 2. P. 167–293.
  14. Djachenko A.I., Djachenko V.A., Tarenkov V.JU., Krivoruchko V.N. Spinovaja poljarizacija i andreevskoe otrazhenie nositelejj zarjada v tochechnykh kontaktakh (LaCa)MnO/sverkhprovodnik // FTT. 2006. T. 48. № 3. S. 407–414.
  15. Jo M.-H., Mathur N. D., Todd N. K., Blamire M. G. Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions // Phys. Rev. B. 2000. V. 61. № 22. P. R14905–R14908.
  16. Nadgorny B., Mazin I.I., Osofsky M., Soulen R.J., Broussard P., Strud R.M., Singh D.J., Harris V.G., Arsenov A., Mukovskii Ya. Origin of high transport spin polarization in La0.7Sr0.3MnO3: direct evidence for minority spin states // Phys. Rev. B. 2001. V. 63. P. 184433 (5).
  17. Izjumov JU.A., Skrjabin JU.N. Model dvojjnogo obmena i unikalnye svojjstva manganitov // UFN. 2001. T. 171. № 2. S. 121–148.
  18. Tunnelnye javlenija v tverdykh telakh / Pod red. EH. Burshtejjn, S. Lundkvist. M.: Mir. 1973. 367 s.
  19. Jo M.-H., Mathur N.D., Evetts J.E., Blamire M.G., Bibes M., Fontcuberta M.G. Inhomogeneous transport in heteroepitaxial La0.7Ca0.3MnO3/SrTiO3multilayers // Appl. Phys. Lett. 1999. V. 75. № 23. P. 3689–3691.
  20. Petrzhik A.M., Ovsjannikov G.A., SHadrin A.V., KHajjdukov JU.N., Mustafa L. Spinovyjj transport v ehpitaksialnykh magnitnykh teterostrukturakh manganit/rutenat s proslojjkojj iz LaMnO3 // ZHEHTF. 2014. T. 146. № 4(10). S. 844–853.
  21. Sun J.Z. Thin-film trilayer manganate junctions // Phil. Trans. R. Soc. Lond. A. 1998. V. 356. № 1742. P. 1693–1712.
  22. Sefri-oui Z., Cros V., Barthelemy A., Peria V., Leon C., Santamaria J., Varela M., Pennycook S.J.Tunnel magnetoresistance in La0.7Ca0.3MnO3/PrBa2Cu3O7/La0.7Ca0.3MnO3// Appl. Phys. Lett. 2006. V. 88. P. 022512(3).

 

May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio