Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Evaluation of the critical frequency using plasma the total electron content of the ionosphere

Keywords:

O.A. Maltseva – Dr. Sc. (Phys.-Math.), Research Scientist, Research Institute of Physics SFU (Rostov-on-Don). E-mail: mal@ip.rsu.ru N.S. Moshaeva – Part-programming engineer, JSC «OKTB «Vektor». E-mail: mozh_75@mail.ru T.N. Nikitenko – Junior Research Scientist, Research Institute of Physics SFU (Rostov-on-Don). E-mail: niki-ta@mail.ru


Generalization and addition of a series of papers of the authors devoted to usage of the total electron content ТЕС for calculation of the critical frequency foF2, defining propagation conditions of radio-waves in the ionosphere is given. The leading role is played by the experimental median of the equivalent slab thickness of the ionosphere τ(med). The main attention is paid to its usage during disturbed conditions. Defined according to more than 40 stations in April 2014, relative variations δfoF2 and δТЕС showed that disturbance was global with various force in various regions, however synchronism of variations was preserved everywhere, that is why, the parameter τ(med) is a reliable coefficient for ТЕС up to moderate disturbances (Dst > −80 nT). Correspondence with the experimental values of foF2 is increased in comparison with the IRI model in limits about 1,5 to 4 with average value 2,2 on all globe. The question on a choice of a global model of τ(med) is considered. Different models prove to be useful in different situations, but there are still problems in foF2 modeling in southern hemisphere.
References:

 

  1. Ljakhov A.N., KHlybov E.S. Estestvennye ortogonalnye funkcii ionosfery // DAN. 2006. T. 409. № 6. S. 819−821.
  2. Houminer Z., Soicher H. Improved short-term predictions of foF2 using GPS time delay measurements // Radio Sci. 1996. V. 31. № 5. P. 1099−1108.
  3. Gulyaeva T.L. International standard model of the Earth’s ionosphere and plasmasphere // Astron. and Astrophys. Transaction. 2003. V. 22. P. 639−643.
  4. Bilitza D. International Reference Ionosphere // Radio Sci. 2001. V. 36 № 2. P. 261−275.
  5. Malceva O.A., Mozhaeva N.S., Nikitenko T.V. Uslovija rasprostranenija korotkikh radiovoln v subavroralnojj zone // EHlektromagnitnye volny i ehlektronnye sistemy. 2010. T. 15. № 5. S. 34−37.
  6. Malceva O.A., Mozhaeva N.S., Nikitenko T.V. Globalnye karty polnogo ehlektronnogo soderzhanija i uslovija rasprostranenija radiovoln v ionosfere// EHlektromagnitnye volny i ehlektronnye sistemy. 2012. T. 17. № 4. S. 21−24.
  7. Maltseva O.A., Mozhaeva N.S., Nikitenko T.V. Comparison of model and experimental ionospheric parameters at high latitudes // Adv. SpaceRes. 2013. V. 51. № 4. P. 599−609.
  8. Maltseva O., Mozhaeva N., Poltavsky O., Zhbankov G. Use of TEC global maps and the IRI model to study ionospheric response to geomagnetic disturbances // Adv. SpaceRes. 2012. V. 49. P. 1076−1087.
  9. Malceva O.A., Mozhaeva N.S. Povedenie ehkvivalentnojj tolshhiny ionosfery v periody polozhitelnykh vozmushhenijj // Izvestija VUZov. Severokavkazskijj region. 2012. № 3. S. 41−43.
  10. Malceva O.A., Mozhaeva N.S., Nikitenko T.V. Globalnye karty PEHS i uslovija rasprostranenija voln v DKM kanale // Tezisy dokladov regionalnojj XVIkonf. po rasprostraneniju radiovoln. S.-Peterburg. 2010. S. 107−110.
  11. Jakowski N., Hoque M.M., Mayer C. A new global TEC model for estimating transionospheric radio wave propagation errors // J. Geod. 2011. V. 85. № 12. P. 965−974.
  12. Hoque M.M., Jakowski N. A new global empirical NmF2 model for operational use in radio systems // Radio Sci. 2011. V. 46. RS6015. P. 1−13.
  13. Gulyaeva T.L. Storm time behavior of topside scale height inferred from the ionosphere-plasmosphere model driven by the F2 layer peak and GPS-TEC observations // Adv. SpaceRes. 2011. V. 47. P. 913−920.
  14. Stankov S.M., Warnant R. Ionospheric slab thickness – Analysis, modeling and monitoring // Adv. SpaceRes. 2009. V. 44. P. 1295−1303.
  15. Maltseva O.A., Mozhaeva N.S., Zhbankov G.A. Advantages of the new model of IRI (IRI-Plas) to simulate the ionospheric electron density: Case of the European area // Adv. SpaceRes. 2013. V. 11. P. 307−311.
  16. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V. STORM: An empirical storm-time ionospheric correction model. 1. Modeldescription // RadioSci. 2002. V. 37. doi: 10.1029/2001RS002467.
  17. Maltseva O.A., Mozhaeva N.S., Nikitenko T.V. Comparative analysis of two new empirical models: IRI-Plas and NGM (the Neustrelitz Global Model) // Adv. SpaceRes. 2014. 13 p. http://dx.doi.org/10.1016/j.asr.2014.09.027.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio