Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Switching field distribution and magnetic behavior of patterned recording media

Keywords:

V.G. Shadrov – Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre (Belarus) L.V. Nemtsevich – Research Scientist, Scientific-Practical Materials Research Centre (Belarus) A.V. Boltushkin – Ph.D. (Phys.-Math.), Senior Research Scientist, Scientific-Practical Materials Research Centre (Belarus). E-mail: nemtsevich@ifttp.bas-net.by


Magnetic behavior of patterned magnetic media and its dependence on intergranular magnetic interaction and switching field distribution, as well as its correlation with preparation conditions and exploitation characteristics are discussed on the basis of the domain structure investigations, irreversible susceptibility measurements and angular dependences of hysteresis characteristics. It is shown, that a key issue for exploiting patterned recording media is improving both thermal stability and writability, as well as switching field distribution (SFD) decreasing, which determines recording density and characterizes magnetic recording media quality. The SFD is determined by magnetic properties of the elements (particles) and the media (array) geometry. A significant influence on magnetization reversal processes and the SFD value renders a magnetostatic interaction between elements, increasing, in particular, the total SFD in magnetic media with perpendicular magnetic anisotropy. For reducing the intrinsic SFD in patterned media it is necessary to avoid defects or to create identical defects in each magnetic element. Another option may be exchange coupled composite patterned structures, where the element reversal is initiated by a nucleation assist layer. Graded media, in which the magnetic anisotropy gradually changes, and core-shell structures are proposed to further improve relation between writability and thermal stability.
References:

 

  1. Piramanayagam S.N. Perpendicular recording media for hard disk drives // J. Appl. Phys. 2007. V. 102. P. 011301–1–22.
  2. Terris B.D. Fabrication challenges for patterned recording media // J. Magn. Mater. 2009. V. 321. P. 512–517.
  3. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media // J. Phys. D: Appl. Phys. 2005. V. 38. P. 199–222.
  4. Ross C.A. Patterned magnetic recording media // Ann. Rev. Mater. Res., 2001. V. 31. P. 203–235.
  5. Sbia R., Piramanayagam S.N. Patterned media towards nano-bit magnetic recording: fabrication and challenges // Rec. Pat. Nanotech. 2007. V. 1. P. 29–40.
  6. Moser A. et al. Magnetic recording: advancing into the future // J. Phys. D.: Appl. Phys. 2002. V. 35. P. 157–167.
  7. Elbagi N. et al. Role of dipolar interactions on the thermal stability of high-density bit-patterned media // IEEE Magn. Lett. 2012. V. 3. P. 4500204–1–4.
  8. Basu S. et al. Control of the switching behaviour of ferromagnetic nanowires using magnetostatic interactions // J. Appl. Phys. 2009. V. 105. P. 083901–1–6.
  9. Hovorka O. et al. Rate-dependence of the switching field distribution in nanoscale granular magnetic materials // Appl. Phys. Lett. 2010. V. 97. P. 062504–1–3.
  10. Tabasum M.R. et al.Magnetic force study of the switching field distribution of low density arrays of single domain magnetic nanowires // J. Appl. Phys. 2013. V. 113. P. 183908–1–5.
  11. Chantrell R.W., O’Grady K. Magnetic characterization of recording media // J. Phys. D: Appl. Phys. 1992. V. 25. P. 1–23.
  12. Pike C.R. et al. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array // Phys. Rev. B. 2005. V. 71. P. 134407–1–7.
  13. Berger A. et al. ∆H(M, ∆M) method for the determination of intrinsic switching field distributions in perpendicular media // IEEE Trans. Magn. 2005. V. 41. P. 3178–3180.
  14. Tabasum M.R. et al.Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy // J. Supercond. Nov. Magn. 2013. V. 26. P. 1375–1379.
  15. Abes M. et al. Magnetic switching field distribution of patterned CoPd dots // J. Appl. Phys. 2009. V. 105. P. 113916–1–8.
  16. Shaw J.M. et al.Origins of switching field distributions in perpendicular magnetic nanodot arrays // J. Appl. Phys. 2007. V. 101. P. 023909–1–4.
  17. Krone P. et al. Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers // J. Nanopart. Res. 2011. V. 13. P. 5587–5593.
  18. Plau B. et al. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates // Appl. Phys. Lett. 2011. V. 99. P. 062502–1–3.
  19. Lau J.W. et al. Microstructural origin of switching field distribution in patterned Co/Pd multilayer nanodots // Appl. Phys. Lett. 2008. V. 92. P. 012506–1–5.
  20. Hellwig O. et al. Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution // Appl. Phys. Lett. 2010. V. 96. P. 052511–1–3.
  21. Zheng Y., Zhu J.-G. Switching field variation in patterned submicron magnetic film elements // J. Appl. Phys. 1997. V. 81. P. 5471‑5473.
  22. Skomski R. Nanomagnetics // J. Phys. F: Cond. Mater. 2003. V.15.P. 841–896.
  23. SHadrov V.G. Mezhkristallitnoe magnitnoe vzaimodejjstvie i svojjstva magnitnykh nanostruktur / Minsk: Izd-vo BGU. 2010.
  24. Majetich S.A., Sachan M. Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales // J. Phys. D: Appl. Phys. 2006. V. 39. P. 407–422.
  25. Hovorka O. et al. Simultaneous determination of intergranular interactions and intrinsic switching field distributions in magnetic materials // Appl. Phys. Lett. 2009. V. 95. P. 192504–1–3.
  26. Welp U. et al. Magnetization reversal in arrays of individual and coupled Co-rings // J. Appl. Phys. 2003. V. 93. P. 7056–7058.
  27. Zighem F. et al. Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study // J. Appl. Phys. 2011. V. 109. P. 013910–1–8.
  28. Aharoni A. Introduction to the theory of ferromagnetism / Oxford University Press. New York. 2001.
  29. Nakamura J., Iwasaki S. Magnetization models of Co-Cr film for the computer simulation  of perpendicular magnetic recording process // IEEE Trans. Magn. 1987. V. 23. P. 153–157.
  30. Huysmans G.T.A., Lodder J.C., Wakui J. Magnetization curling in perpendicular iron particle arrays (alumite media) // J. Appl. Phys. 1988. V. 64. P. 2016–2021.
  31. Hovorka O. et al. On the ability to determine intrinsic switching field distributions from hysteresis loops in the partially correlated magnetization reversal regime // J. Magn. Magn. Mater. 2010. V. 322. P.459–468.
  32. SHadrov V.G. Vremennye magnitnye ehffekty i termostabilnost nositelejj magnitnojj zapisi // Uspekhi sovremennojj radioehlektroniki. 2005. №12. S.70–76.
  33. Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423–4439.
  34. Bedanta S., Kleemann W. Supermagnetism // J. Phys. D.: Appl. Phys. 2009. V. 42. P. 013001–1–28.
  35. Albrecht M. et al. Thermal stability and recording properties of sub-100 nm patterned CoCrPt perpendicular media // J. Appl. Phys. 2002. V. 91. P. 6845–6848.
  36. Asbahi M. et al. Recording performance in perpendicular magnetic patterned Media // J. Phys. D: Appl. Phys. 2010. V. 43. P. 385003–1–5.
  37. Charap S.U. Thermal stability of recorded information at high densities // IEEE Trans. Magn. 1997. V. 33. P. 978–983.
  38. Rottmayer R.E. et al.Heat-assisted magnetic recording // IEEE Trans. Magn. 2006. V. 42. P. 2417–2421.
  39. Victora R.H., Shen X. Composite media for perpendicular magnetic recording // IEEE Trans. Magn. 2005. V. 41. P. 537–542.
  40. Suess D.Multilayer exchange spring media for magnetic recording // Appl. Phys. Lett. 2006. V. 89. P. 113105–1–3.
  41. Ma B. et al.Core-shell exchange coupled nanocomposites for ultrahigh recording density // IEEE Trans. Magn. 2010. V. 46. P. 2345–2349.
  42. SHadrov V.G., Nemcevich L.V.Mezhkristallitnoe magnitnoe vzaimodejjstvie v tonkoplenochnykh sredakh magnitnojj zapisi // Uspekhi sovremennojj radioehlektroniki. 2010. №8. S.34–42.
  43. Hauet T. et al. Role of reversal incoherency in reducing switching field and switching field distribution of exchange couple composite bit patterned media // Appl. Phys. Lett. 2009. V. 95. P. 262504–1–3.
  44. Bertram H.N., Longsfield B. Energy barriers in composite media grains // IEEE Trans. Magn. 2007. V. 43. P. 2145–2147.
  45. Wiedwald U. et al. Tuning the properties of magnetic thin films by interaction with periodic nanostructures // Beilstein J. Nanotech. 2012. V. 3. P. 831–842.
  46. Thomson T. et al. Magnetic anisotropy and reversal mechanisms in dual layer exchanged coupled perpendicular media // J. Appl. Phys. 2008. V. 103. P. 0754.
  47. Goll D., Macke S. Thermal stability of ledge-type L10-FePt/Fe exchange spring nanocomposites for ultrahigh recording density // Appl. Phys. Lett. 2008. V. 93. P. 152512–1–3.
  48. Fassbender J., McCord J. Magnetic patterning by means of ion irradiation and implantation // J. Magn. Magn. Mater. 2008. V. 320. P. 579–596.
  49. Krone P. et al. Nanocap arrays of granular CoCrPt: SiO2films on silica particles: tailoring of the magnetic properties by Co+irradiation // Nanotechnology. 2010. V. 21. P. 385703–1–7.
  50. Sohn J.-S. et al.The fabrication of Co-Pt electrodeposited bit patterned media with nanoimprint lithography // Nanotechnology. 2009. V. 20. P. 025302–1–5.
  51. Sendur K., Challener W. Patterned medium for heat assisted magnetic recording // Appl. Phys. Lett. 2009. V. 94. P. 032503–1–3.
  52. Bader S.D. Colloquim: Opportunities in nanomagnetism // Rev. Mod. Phys. 2006. V. 78. P. 1–15.

 

June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio