Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Phase noise research for feedback microwave oscillator on HTSC disk resonator


V.A. Esipenko – Dr. Sc. (Phys.-Math.), Professor, Alekseev State Technical University of Nizhni Novgorod. E-mail: G.M. Korobkov – Ph. D. (Phys.-Math.), Leading Engineer, OAO NPP Salyut (Nizhni Novgorod) E-mail: I.M. Krevskii – Leading Specialist, OAO Mobil’nye TeleSistemy (Moscow). E-mail: M.A. Krevskii – Ph. D. (Phys.-Math.), Head of Department, OAO NPP Salyut (Nizhni Novgorod). S.A. Pavlov – Senior Research Scientist, Institute for Physics of Microstructures, RAS (Nizhni Novgorod). E-mail: A.E. Parafin – Ph. D. (Phys.-Math.), Research Scientist, Institute for Physics of Microstructures, RAS, Lobachevsky State University (Nizhni Novgorod). E-mail: D.V. Masterov – Ph. D. (Phys.-Math.), Research Scientist, Institute for Physics of Microstructures, RAS (Nizhni Nov-gorod). E-mail:

Low phase noise high stability oscillators are the basic element for radiolocation, radio navigation, telemetric, and measurement equipment. Main qualitative parameters of modern radiosystems are determined by noise parameters of high-stability reference sources. Choice of resonance systems for microwave oscillators with low phase noise is limited and is of great interest for microwave engineers. In article the results of phase noise measurements for various designs of microwave oscillator with disk resonator on high-temperature superconducting films are presented. Microwave oscillator is made on classic scheme with resonator in feedback circuit. Resonator was cooled up to 77 K, and the rest elements of the oscillator scheme were kept at room temperature. Disk resonator on high-temperature superconductor is a substrate of lanthanum aluminate with 12,5×12,5 mm dimensions and 0,5 mm thickness. At the one side of substrate it is formed disk with 9,7 mm diameter from film of high-temperature superconducting Y1Ba2Cu3O7-δ (YBCO), the other side of substrate is totally covered with YBCO film. An axial-symmetric mode ТМ010 with resonance frequency 7, 50 GHz was chosen for operating frequency. Microwave oscillators were designed on two different resonators with loaded Q-factor of 17 000 and 27 000, and insertion losses 7,3 dB and 8,8 dB respectively. There are no relations between resonator characteristics and applied RF power. Active element of oscillator is made on Silicon-Germanic bipolar transistors BFP640, or HMC606LC5 – matched monolithic circuit – manufactured on heterojunction bipolar transistor (HBT) technology. The power spectral density of oscillator phase noises is in good compliance with well-known Leeson’s equation. The best phase noises were achieved as −136,2 dB/Hz at 10 kHz offset. To estimate oscillator phase noises, Leeson’s equation can be viewed with respective experimental parameters. It gives opportunity to estimate phase noise oscillator by experimentally measured resonator and amplifier parameters. Leeson’s equation with experimental data allows simple and evident method for oscillator phase noises optimization as compromise between increasing of resonator Q-factor and decreasing of active element additive noises. Obtained results allows to conclude that disk resonator on high-temperature superconducting YBCO films give no additional noises and therefore can be considered as promising component for microwave oscillator design with ultra low phase noises. As per our estimation resonator Q-factor can be increased up to 50000−70000 due to YBCO film technology improvements, as far as per resonator and casing optimization. In this case, the suggested oscillator scheme can show phase noises as −145 dB/Hz at 10 kHz offset. Basing on feedback oscillator with disk superconducting resonator analysis it is shown that evident and simple estimation for classic Leeson’s equation with experimental parameters can be applied. It is proved experimentally that phase noises in flicker region for oscillator with superconducting resonator are determined by amplifier additive phase noises spectrum.


  1. Parafin A.E., Masterov D.V., Pavlov S.A., Krevskijj M.A.,Korobkov G.M., Krevskijj I.M. Maket SVCH-generatora s nizkim urovnem fazovogo shuma s VTSP diskovym rezonatorom v cepi obratnojj svjazi // Pisma v ZHTF. 2013. T. 39. № 23. S. 63−71.
  2. Esipenko V.I., Sveshnikov B.V., Krevskijj I.M. Optimizacija fazovykh fluktuacijj vysokostabilnykh generatorov SVCH-diapazona // XVIII Mezhdunar. nauchno-tekhnich. konf. IST 2012. N.Novgorod. 2012. S. 61.
  3. Esipenko V.I., Sveshnikov B.V., Krevskijj I.M. EHksperimentalnye issledovanija fazovykh shumov avtogeneratora na osnove rezonatora na poverkhnostnykh akusticheskikh volnakh // XVIII Mezhdunar. nauchno-tekhnich. konf. IST 2012. N.Novgorod. 2012. S. 62.
  4. Masterov D.V., Pavlov S.A., Parafin A.E. Tekhnologija izgotovlenija passivnykh ustrojjstv VCH i SVCH-diapazonov na osnove plenok vysokotemperaturnogo sverkhprovodnika YBaCuO. Parametry testovykh ehlementov // Izvestija RAN. Serija Fizicheskaja. 2012. T. 76. № 2. S. 169−171.
  5. Zuccaro C., Winter M., Klein N., Urban K. Microwave absorption in single crystals of lanthanum aluminate // Journal of Applied Physics. 1997. V. 82. № 11. P. 5695−5704.
  6. Klein N., Schornstein S., Ghosh I.S., Schemion D., M.Winter M., Zuccaro C. High-Q dielectric resonator devices at cryogenic temperatures // IEEE Transactionson Applied Superconductivity. 1999. V. 9. № 2. P. 3573−3576.
  7. Spravochnik po raschetu i konstruirovaniju SVCH poloskovykh ustrojjstv / Pod red. V.I. Volmana. M.: Radio i svjaz. 1982. 328 s.
  8. Leeson D.B. A simple model of feedback oscillator noises spectrum // Proc. IEEE. 1966. V. 54. № 2. February. P. 329−330.
  9. Cutler L.S., Searle C.L., Some aspects of the theory and measurement of frequency fluctuations in frequency standards // Proc. IEEE. 1966. V. 54. № 2. February. P. 136−154.
  10. Khanna A.P.S. Microwave Oscillators: The State of the Technology // Microwave Journal. 2006. V. 49. № 4. April. P. 22−44.
  11. Cibiel C., Regis M., Llopis O., Kersale Y., Giordano V., Lafontaine H., Plana R., Chaubet M. Ultra Low Phase Noise SiGe HBT Application to a C Band Sapphire Resonator Oscillator // Proc. IEEE MTT Symp. 2002. P. 691−694.
  13. Carapkin D.P. Primenenie diehlektricheskikh rezonatorov s volnami tipa «shepchushhejj galerei» dlja stabilizacii chastoty avtogeneratorov sverkhvysokikh chastot // Radiotekhnika. 2002. № 2. S. 28−35.
  14. McNeilage C., Searls J., Ivanov E., Stockwell P., Green D. and Mossammaparast M. A Review of Sapphire Whispering Gallery-mode Oscillators Including Technical Progress and Future Potential of the Technology // 2004 IEEE International Frequency Control Symposium Proceedings. P. 210−218.
  15. Malakhov A.N. Fluktuacii v avtokolebatelnykh sistemakh. M.:Sov. radio. 1968. 660 s.


© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio