Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Neurochemical mechanisms of forming the nervous system autoimmune diseases


I. V. Kudaeva – Dr. Sc. (Med.), Associate Professor, Head of Clinical Diagnostic Biochemistry Laboratory, FSBI "East-Siberian Scientific Center of Human Ecology" SD RAMS (Angarsk)

The results of the experimental and clinical studies dealing with the pathogenesis of the autoimmune diseases of the nervous system are represented in this survey. The antibody synthesis is known to be the function of specific immunity. At the same time, in the recent years it was indicated that the cells of inborn immunity may be activated by the necrosis and apoptosis products promoting the activation of the autoimmune processes. At present, some pathogenetical concepts of the autoimmune processes in the nervous system are isolated. A special role in studying the problem above is.given to the function disorder of the hematoencephalic barrier which may occur both in the massive lesion of the brain matter and in the disfunction of the endothelium and astrocytes. Till present, the pathogenetical significance of the-higher level of the autoantibodies to the different antigens of the nervous system as well as the role of different biologically active substances, the growth factors and neuromediators remain not well studied. At the same time, the activation of cellular mechanisms of immunity may be very important in the development of autoimmune processes. The mitochondria disfunction, disorder of energetical metabolism in the neurones and astrocytes are considered as another mechanism of neurodegeneration development. The excitotoxicity, neurotoxicity of zinc, neurotoxicity of amyloid-β, role of cytokines, nitrogen oxide and growth factors may be isolated among the neurochemical mechanisms of the autoimmune disease development of the nervous system.


  1. ZHirnova I. G., Larina I. V., Komelkova L. V., Careva M. I. Rol adgezivnykh svojjstv lejjkocitov i syvorotki krovi v patogeneze rassejannogo skleroza // ZHurnal nevrologii i psikhiatrii im. C.C. Korsakova. 2008. T. 108. № 4. S. 56–61.
  2. Srivastava R, Aslam M, Kalluri S., Schirmer L. et al. Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis // N Engl J Med 2012. V. 367. P. 115–123.
  3. Dutta R., McDonough J., Yin X., Peterson J., et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. // Ann. Neurol. 2006. V.59. P.478–489.
  4. Lu F., Selak M., O\'Connor J., Croul S., et al. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. // J. Neurol. Sci. 2000. V. 177. P. 95–103.
  5. Nikic I., Merkler D., Sorbara C., Brinkoetter M.,et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. // Nat. Med. 2011. V. 17. P. 495–499.
  6. Hoyer S, Frolich I. Dementia: the significance of cerebral metabolic disturbances in Alzheimer’s disease. Relation to Parkinson’s disease. In: Handbook of neurochemistry and molecular biology 3rd edition, degenerative diseases of the nervous system. New York: Springer; 2007. P. 189–232.
  7. Pappas B.A., Bayley P.J., Bui B.K., Hansen L.A. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. // Neurobiol Aging. 2000. V. 21. P.11–17.
  8. Szutowicz A., Bielarczyk H., Gul S., Ronowska A. et al. Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. // Metab Brain Dis. 2006. V.21. P. 149–161.
  9. Martin L.J. Mitochondrial pathobiology in Parkinson’s disease and amyotrophic lateral sclerosis. // J Alzheimer’s Dis. 2010. V. 20. P. 335–356.
  10. Higgins G.C., Beart P.M., Shin Y.S., Chen M.J. et al. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. // J Alzheimer’s Dis. 2010. V. 20(2). P. 453–473.
  11. Lin M. T., Beal M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. // Nature. 2006. V. 443. P. 787–795.
  12. Moncada S., Bolanos J. P. Nitric oxide, cell bioenergetics and neurodegeneration. // J Neurochem. 2006. V. 97. P. 1676–1689.
  13. Murphy M. P., LeVine H. Alzheimer’s disease and amyloid-βpeptide. // J Alzheimer’s Dis. 2010. V. 19. P. 311–323.
  14. Berridge M. J. Calcium signaling and Alzheimer’s disease. // Neurochem Res. 2011. V. 36. P. 1149–1156.
  15. Sensi S.L., Paoletti P., Bush A.I., Sekler I. Zinc in the physiology and pathology of the CNS. // Nat Rev Neurosci. 2009. V. 10. P. 780–792.
  16. Steinert J. R., Chernova T., Forsythe I. D. Nitric oxide signaling in brain function, dysfunction, and dementia. // Neuroscientist. 2010. V. 16. P. 435–452.
  17. Szutowicz A. Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons. // J Neurosci Res. 2001. V. 66. P. 1009–1018.
  18. Fortress A. M., Buhusi M., Helke K. L., Granholm A. C. E. Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of pro-NGF injection into aged rats. // J Aging Res. 2011.
  19. Perez S.E., He B., Muhmmad N., Oh K.J. et al. Cholinotropic basal forebrain system alterationsin 3xTg-AD transgenic mice. // Neurobiol Dis. 2011. V. 41. P. 338–352.
  20. Takeda A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. // Mol Neurobiol. 2011. V. 44. P. 166–174.
  21. Frederickson C. J., Maret W., Cuajungco M. P. Zinc and excitotoxic brain injury. // Neuroscientist. 2004. V. 10. P. 18–25.
  22. Mocchegiani E., Bertoni-Freddari C., Marcellini F., Malavolta M. Brain, aging and neurodegeneration: role of zinc ion availability. // Progr Neurobiol. 2005. V. 75. P. 367–390.
  23. Hynd M.R., Scott H. L., Dodd P. R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. // Neurochem Int. 2004. V. 45. P. 583–595.
  24. Supnet C., Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer’s disease. // J Alzheimer’s Dis. 2010. V. 20. P. S487–S498.
  25. Yu J. T., Chang R. C. C., Tan L. Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. // Progr Neurobiol. 2009. V. 89. P. 240–255.
  26. Jhala S.S., Hazell A.S. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. // Neurochem Int. 2011. V. 58. P. 248–260.
  27. Ronowska A., Gul-Hinc S., Bielarczyk H., Pawełczyk T. Effects of zinc on SN56 cholinergic neuroblastoma cells. // J Neurochem. 2007. V. 103. P. 972–983.
  28. Ronowska A., Dyś A., Jankowska-Kulawy A., Klimaszewska-Łata J. et al. Short-term effects of zinc on acetylcholine metabolism and viability of SN56 cholinergic neuroblastom cells. // Neurochem Int. 2010. V. 56. P. 143–151.
  29. Madhavarao N. C., Chinopoulos C., Chandrasekaran K., Namboodiri M. A. A. Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. // J Neurochem. 2003. V. 86. P. 824–835.
  30. Deutsch J., Rapoport S. I., Rosenberger T. A. Valproyl-CoA and estrified valproic acid are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl-CoA are altered. // Neurochem Res. 2003. V. 28. P. 861–866.
  31. Bossy-Wetzel E., Talantova M. V., Lee W. D., Scholzke M.N. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels // Neuron. 2004. V. 41. P. 351–365.
  32. Bielarczyk H., Gul S., Ronowska A., Bizon-Zygmańska D. et al. RS-α-lipoic amid protects cholinergic cells against sodium nitroprusside and amyloid-βneurotoxicity through restoration of acetyl-CoA level. // J Neurochem. 2006. V. 98. P. 1242–1251.
  33. Bielarczyk H., Tomaszewicz M., Madziar B., Ćwikowska J. et al. Relationships between cholinergic phenotype and acetyl-CoA level in hybrid Marine neuroblastoma cells of sep tal origin // J Neurosci Res. 2003. V. 73. P. 717–721.
  34. Bielarczyk H., Jankowska A., Madziar B., Matecki A. et al. Differential toxicity of nitric oxide, aluminum and amyloid-beta peptide in SN56 cholinergic cells from mouse septum // Neurochem Int. 2003. V. 42. P. 323–331.
  35. Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. // Journal of Experimental Medicine. 2001. V. 193(4). P. 427–434.
  36. Lin J, Ziring D, Desai S, et al.TNFα blockade in human diseases: an overview of efficacy and safety. // Clinical Immunology. 2008. V. 126(1). P. 13–30.
  37. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. // Neurology. 1999. V. 53(3). P. 457–465.
  38. Robinson W. H., Genovese M. C., Moreland L. W. Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? // Arthritis & Rheumatism. 2001. V. 44(9). P. 1977–1983.
  39. Ransohoff R. M., Perry V. H. Microglial physiology: unique stimuli, specialized responses. // Annu Rev Immunol. 2009. V. 27. P. 119–145.
  40. Block M. L., Zecca L., Hong J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. // Nat Rev Neurosci. 2007. V. 8. P. 57–69.
  41. Bernstein H. G., Steiner J., Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. // Expert Rev Neurother. 2009. V. 9. P. 1059–1071.
  42. Monji A., Kato T., Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. // Psychiatry Clin Neurosci. 2009. V. 63. P. 257–265.
  43. Dong Y., Benveniste E. N. Immune function of astrocytes. // Glia. 2001. V. 36. P. 180–190.
  44. Donato R. Intracellular and extracellular roles of S100 proteins. // Microsc Res Tech. 2003. V. 60. P. 540–551.
  45. Heizmann C. W., Ackermann G. E., Galichet A. Pathologies involving the S100 proteins and RAGE. // Subcell Biochem. 2007. V. 45. P. 93–138.
  46. Rothermundt M., Ponath G., Glaser T., Hetzel G. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. // Neuropsychopharmacology. 2004. V. 29. P. 1004–1011.
  47. Adami C., Sorci G., Blasi E. et al. S100B Expression in and effects on microglia // Glia. 2001. V. 33. P. 131–142.
  48. Sorci G., Bianchi R., Riuzzi F., Tubaro C. et al. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. // Cardiovasc Psychiatry Neurol. 2010.
  49. Steiner J., Bogerts B., Schroeter M. L., Bernstein H.G. S100B protein in neurodegenerative disorders. // Clin Chem Lab Med. 2011. V. 49. P. 409–424.
  50. Steiner J., Myint A.M., Schiltz K., Westphal S. et al. S100B serum levels in schizophrenia are presumably related to visceral obesity and insulin resistance. // Cardiovasc Psychiatry Neurol. 2010.
  51. Steiner J., Bernstein H. G., Bielau H., Berndt A. et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. // BMC Neurosci. 2007. V. 8. P. 2.
  52. Gomazkov O. A. «Nejjropeptidy i rostovye faktory mozga» Informacionno-spravochnoe izdanie. Moskva, 2002. 240 s.
  53. Ferrari G., Toffano G., Skaper S.D. Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor. // J Neurosci Res. 1991. V. 30. P. 493–497.
  54. Li Y., Liu L., Barger S.W., Griffin W.S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. // J Neurosci. 2003. V. 23. P. 1605–1611.
  55. Namba H., Nagano T., Iwakura Y., Xiong H. et al. Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. // Mol Cell Neurosci. 2006. V. 31. P. 628–641.
  56. Namba H., Takei N., Nawa H. Transforming growth factor-alpha changes firing properties of developing neocortical GABAergic neurons by down-regulation of voltage-gated potassium currents. // Neuroscience. 2003. V. 122. P. 637–646.
  57. Qin L., Wu X., Block M.L., Liu Y. et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. // Glia. 2007. V. 55. P. 453–462.
  58. Kronfol Z., Remick D. G. Cytokines and the brain: implications for clinical psychiatry. // Am J Psychiatry. 2000. V. 157. P. 683–694.
  59. Raison C. L., Miller A. H. Is depression an inflammatory disorder? // Curr Psychiatry Rep. 2011. V. 13. P. 467–475.
  60. Benilova I., Karran E., De Strooper B. The toxic Aβoligomer and Alzheimer’s disease: an emperor in need of clothes. // Nat Neurosci. 2012. V. 15. P. 1–9.
  61. Klunk W.E. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. // Neurobiol Aging. 2011. V. 32. P. S20–S36.
  62. Robakis N. K. Mechanisms of AD neurodegeneration may be independent of Aβand its derivatives. // Neurobiol Aging. 2011. V. 32. P. 372–379.


© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio