Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

The reversion method of Volterrа's functional series for digital correction of nonlinear distortions in analogue Radio engineering devices

Keywords:

V.I. Proskurin – Ph. D. (Eng.), RC (Tver) CRI ADF of Russian Defence Ministry


To carry out digital correction of nonlinear distortions of signals in the analogue Radio engineering devices. The reversion method the Fаa di Bruno’s type formula is generalised on a case of the multiple functional differentiation of superposition of nonlinear operators on the real and complex functions spaces. On the base of this formula the method of reversion Volterrа’s functional series is developed. The generalized formula of Faa di Bruno’s and the method of reversal of functional polynomials make the generalized method coefficients allowing to find coefficients of the functional polynomials for superposition (serial connection) several non-linear systems, non-linear feedback systems, etc. The Method of reversal of the functional rows allows to fulfill numeral correction of non-linearity distortions of signals in the analog parts of radio receivers and also to calculate numeral pre-distortions for a signal on an input of power amplifiers of radio transmitters.
References:

 

  1. Proskurin V.I. Ocenka trebovanijj k linejjnosti priemnogo trakta aktivno-passivnykh RLS // Radiotekhnika (Radiosistemy:KURS). 2011. № 1 (159:18). S. 80−83.
  2. Bedrosjan EH., Rajjs S.O. Svojjstva vykhodnogo signala sistem, opisyvaemykh rjadami Volterra (nelinejjnykh sistem s pamjatju), pri podache na vkhod garmonicheskikh kolebanijj i gaussova shuma // TIIEHR. 1971. T. 59. № 12. S. 58−82.
  3. Kashkin V.B. Funkcionalnye polinomy v zadachakh statisticheskojj radiotekhniki. M.: Nauka. 1981.
  4. Volterra V. Teorija funkcionalov, integralnykh i integro-differencialnykh uravnenijj. M.: Nauka. 1982.
  5. Viner N. Nelinejjnye zadachi v teorii sluchajjnykh processov. M.: In.Lit., 1961.
  6. Djoch R. Nelinejjnye preobrazovanija sluchajjnykh processov. M: Sov. radio. 1965.
  7. Berezin F.A. Metod vtorichnogo kvantovanija. M.: Nauka. 1986.
  8. Kolmogorov A.N., Fomin S.V. EHlementy teorii funkcijj i funkcionalnogo analiza. M.: FIZMATLIT. 2004.
  9. Daleckijj JU.L., Fomin S.V. Mery i differencialnye uravnenija v beskonechnomernykh prostranstvakh. M.: Nauka. 1983.
  10. Vladimirov V.S. Metody teorii funkcijj mnogikh kompleksnykh peremennykh. M.: Nauka. 1964.
  11. Rytov S.M., Kravcov JU.A., Tatarskijj V.I. Vvedenie v statisticheskuju radiofiziku. CH.2. Sluchajjnye polja. M.: Nauka. 1978.
  12. Fikhtengolc G.M. Kurs differencialnogo i integralnogo ischislenija. M.: Nauka. 2001. T. 2.
  13. Pupkov K.A., Kapalin V.I., JUshhenko A.S. Funkcionalnye rjady v teorii nelinejjnykh sistem. M.: Nauka. 1976.
  14. Barrett J.F. Nonlinear System Analysis by Volterra and Hermite functional expansions. Southampton. GB: University of Southampton. 2012. http://eprints.soton.ac.uk/id/eprint/345465.
  15. Gradshtejjn I.S., Ryzhik I.M. Tablicy integralov, summ, rjadov i proizvedenijj. M.: FML. 1963.
  16. Gursa L. Kurs matematicheskogo analiza. M.,L.: GTTI. 1933. T. 1.
  17. Arbogast L.F.A. Du Calcul des D`erivations. Strasbourg: Levrault. 1800.
  18. Faa di Bruno F. Sullo Sviluppo delle Funzioni // Annali di Scienze Matematiche e Fisiche. 1855. V. 6. P. 479−480. https://hal.archives-ouvertes.fr/hal-00950525.
  19. Constantine G.M., Savits T.H. A multivariate Faa di Bruno formula with applications // Trans. Amer. Math. Sot. 1996. V. 348. № 2. P. 503−520.
  20. Encinas L.H., Masque J.M. A Short Proof of the Generalized Faa di Bruno’s Formula // Applied Mathematics Letters. 2003. V. 16. P. 975−979.
  21. Leipnik R.B., Pearce C.E.M. The multivariate Faaґdi Bruno’s Formula and multivariate Taylor Expansions with explicit Integral Remainder Term // ANZIAM J. 2007. V. 48. P. 327−341.
  22. Wiener N. Response of a Non-Linear Device to Noise // Tech. Rep. 168: MIT Rad. Lab. Report. 1951. December.
  23. Ikehara S. A Method of Wiener in a Non-Linear Circuit // Tech. Rep. 217: MITRLEReport. 1951. December.
  24. Schetzen M. Theory of pth Order Inverses of Nonlinear Systems // IEEE Trans. on Circuits and Systems. 1976. V. 23. № 5. P. 285−281.
  25. Vishik M.I., Fursikov A.V. Matematicheskie zadachi statisticheskojj gidromekhaniki. M.: Nauka. 1980.
  26. Proskurin V.I., SHevchuk V.I. Identifikacija nelinejjnykh ustrojjstv po mnogochastotnomu signalu // Radiotekhnika (Radiosistemy:KURS). 2010. № 11 (157:17). S. 68−71.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio