Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


On methods of calculation of microscopic integral inductance with high symmetry


V.G. Sapogin – Ph. D. (Phys.-Math.), Professor, Department физики, Academy of Engineering and technology of SFU (Taganrog) E-mail: N.N. Prokopenko – Dr. Sc. (Eng.), Professor, Head of Department, Don State Technical University (Rostov-on-Don) E-mail:

The diminution of geometric size of IC elements generates the problem of calculation of microscopic inductance. During last twenty years the methods of calculation of planar spiral inductances, loaded at silicon film (CMOS technology), are most actively developed. In models the integral inductance is substituted by equivalent circuit of replacement with lumped parameters. The models can’t explain physical reasons of negative inductance’s appearance and answer the question: how nulls of inductance can be moved by changing of spluttering technique? In the paper the review of valid physic-mathematical methods for calculation of parameters of integral inductance with high symmetry, which are deprived of such shortcomings, are proposed. The first method issues from physical definition of inductance as proportionality coefficient between the current and magnetic flux. The static inductance, calculated by such method, gives the true order of microscopic inductance’s values till cutoff frequencies by order of 1 GHz. Through the first method of calculation the next problems have been solved: 1) flux inductance of the ring with finite radial thickness has been calculated; 2) inductive properties of various spiral shave been researched; 3) running inductance of cylindrical conductors has been determined; 4) the model of coaxial cable’s integral inductance, which can be not only positive, but under the certain conditions, it can be large and negative, has been built. The second method permits to calculate the inductance, inserted by the substance, where Foucault currents are arisen. The external magnetic field and the field of substance’s response create the complete magnetic field in conductive cylinder. The complete field’s energy, averaged on the period of its changing, is partially taken at the heating of this substance and is partially reserved as magnetic field’s energy, associated with inductive properties of this substance. The redistribution of energy to a large extent depends of the frequency of external field. Nulls of inductance arise in the moment, when the whole energy of complete magnetic field consumes at the compensation of losses. Through the second method of calculation the problem for external magnetic field, which direction coincides with the axis of solid conductive cylinder, has been solved. The quadric frequency dependence of inductance, where its nulls divide the whole frequency band into three intervals: LF (low frequency), MF (medium-frequency) and EHF (extremely high frequency) one. At LF-interval the inductance is always negative. The scale and the first null of film’s inductance of RPGS inductor, agreed with observation, have been estimated. The solution of fundamental problem of cutoff frequency in strip coils is discussed.


  1. Kalantarov P.L., Cejjtlin L.A. Raschet induktivnostejj: spravochnaja kniga. L.: EHnergoatomizdat. 1986. 488 s.
  2. Yueetal C.P. A physical model for planar spiral inductors on silicon // Proc. IEEE IEDM‑96. P. 155−158.
  3. Burghartz J.N., Jenkins K.A.andSoyuer M. Multilevel-spiral inductors using VLSI interconnect technology // IEEE Electron Device Lett. 1996. V. 17. P. 428−430.
  4. Yueetal C.P. On-chip spiral inductors with patterned ground shields for Si-based RF IC’s // IEEE JSSC. May 1998. V. 33. P. 743−752.
  5. Mohan S.S., Yue C.P., Hershenson M.D.M., Wong S.S.andLee T.H. Modeling and characterization of on-chip transformers // IEDM Tech. Dig. 1998. P. 531−534.
  6. Kuhn W.B.andYanduru N.K. Spiral inductor substrate loss modeling in silicon RFICs // Proc. IEEE RAWCON. 1998. P. 305−308.
  7. Mohan S.S., Hershenson M.D.M., Boyd S.P.andLee T.H. Bandwidth extension in CMOS with optimized on-chip inductors // IEEE J. Solid-State Circuits. V. 35. № 3. 2000. P. 346−355.
  8. Kuhn W.B.andIbrahim N.M. Analysis of Current Crowding Effects in Multiturn Spiral Inductors // IEEE Trans. on Microwave Theory and Techniques. Jan, 2001. V. 49. № 1. P. 31−38.
  9. Ragonese E., Biondi T., Scuderi A., Palmisano G. A Lumped Scalable Physics-Based Model for Silicon Spiral Inductors // IEEE. 2002. P. 119−124.
  10. Watson A.C., Melendy D., Francis P., Hwang K.andWeisshaar A. A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICs // IEEETrans. Microw. TheoryTech. 2004. V. 52. № 3. P. 849−857.
  11. Widjaja A.andSarangan A. Method for Fabrication Thin Film Structures with Negative Inductance. Case #: UD‑488. US Patent Pending; Publication # 20090261936. Inventor: AgusWidjaja. et. al.
  12. Sapogin V.G., Prokopenko N.N., Marchuk V.I. Potokovaja induktivnost ploskogo provodjashhego kolca s azimutalnojj plotnostju toka // Uspekhi sovremennojj radioehlektroniki. 2013. № 5. S. 68−72.
  13. Sapogin V.G., Prokopenko N.N. Flux Inductance of Plane Conducting Ring with Azimuth Density of Current. International Conference on Signals and Electronic Systems 2014, Poznan, Poland. 11−13 September 2014. ICSES‑2014_2779.pdf.
  14. Koenraad Van Schuylenbergh, Christopher L. Chua, David K. Fork, Jeng-Ping Lu and Bernie Griffiths. Palo Alto Research Center. Parc’s on-chip microcoil demonstrates world-record performance. Mixed Signal Systems Inc., Scotts Valley.
  15. Sapogin V.G., Prokopenko N.N., Manzhula V.G. O raschete koehfficienta uvelichenija planarnojj induktivnosti spiralnogo tipa // Fundamentalnye issledovanija. 2013. № 11 (CH. 6). S. 1150−1153.
  16. Sapogin V.G., Prokopenko N.N., Marchuk V.I. Pogonnaja induktivnost cilindricheskikh provodnikov s aksialnojj plotnostju toka v slozhnykh funkcionalnykh blokakh // Inzhenernyjj vestnik Dona. 2012. № 4/1.
  18. Sapogin V.G., Prokopenko N.N. Running Inductance of Cylindrical Conductors with Axial Current Density. ICSES 2014_9718.pdf.
  19. Sapogin V.G., Manzhula V.G. Upravlenie pogonnojj induktivnostju koaksialnogo kabelja s aksialnojj plotnostju tokov // Fundamentalnye issledovanija. 2013. № 5 (CH. 5). S. 984−989.
  20. Sapogin V.G., Prokopenko N.N., Manzhula V.G., Sapuncov N.E., Nestjurina E.E. Induktivnost sploshnogo provodjashhego cilindra s azimutalnojj plotnostju vikhrevogo toka v nizkochastotnojj oblasti // Fundamentalnye issledovanija. 2013. № 11 (CH. 3). S. 441−446.
  21. Sapogin V.G., Prokopenko N.N., Marchuk V.I., Manzhula V.G., Budjakov A.S. Induktivnye svojjstva mikroskopicheskogo provodjashhego kolca s plotnostju vikhrevogo toka azimutalnogo napravlenija // Nano- i mikrosistemnaja tekhnika. 2014. № 1. S. 22−26.
  22. Sapogin V.G., Prokopenko N.N., Budjakov A.S. Fizicheskie svojjstva integralnojj induktivnosti lentochnogo MEMS‑solenoida na SVCH // Materialy 24‑jj Mezhdunar. Krymskojj konf. «SVCH tekhnika i telekommunikacionnye tekhnologii» (KryMiKo‑2014). Sevastopol, 7−13 sentjabrja 2014 g. Sevastopol: Veber. 2014. S. 643−644.
  23. Sapogin V.G., Prokopenko N.N., Sapuncov N.E. Induktivnost cilindricheskojj plenki s azimutalnojj plotnostju vikhrevogo toka // Materialy Mezhdunar. konf. «Aktualnye problemy ehlektronnogo priborostroenija». Saratov. Rossija. 25−26 sentjabrja 2014. T. 2. S. 358−365.
  24. Sapogin V.G., Prokopenko N.N., Marchuk V.I. Teoreticheskie osnovy proektirovanija integralnykh induktivnostejj dlja slozhnykh funkcionalnykh blokov i IP‑modulejj sistem svjazi i telekommunikacijj novogo pokolenija // Itogovyjj otchet po grantu RFFI № 12-08-00654-a. 2012-2013. S. 69.


June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio