Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Dual-band microstrip antennas for cellular telecommunications

Keywords:

D. I. Voskresenskiy – Dr.Sc. (Eng.), Professor, Head of Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute (National Research University)
E. V. Ovchinnikova – Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute (National Research University)
Bui Cao Ninh – Post-graduate Student, Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute (National Research University). E-mail: buicaoninh@gmail.com
S. G. Kondratieva – Post-graduate Student, Department of Radiophysics, Antennas and Microwave Technique of Moscow Aviation Institute (National Research University)


At the present stage of development of telecommunication systems the necessity of expansion of their functionalities arises. Appearance of new possibilities of mobile communication systems dictates new requirements for characteristics of mobile phones antennas. The main requirement is an expansion of operating band or ability to work in several frequency bands. The application of broadband or multiband antennas provides mobile broadband internet access, video transmission and high bandwidth. The perspective direction in creating mobile phones antennas is designing compact antennas, operating in different combinations of frequency bands of cellular standards. Currently, many telecommunication companies use WiMAX standard to provide high-speed communication services. Therefore, the necessity of creating microstrip antennas arises, operating in two frequency bands of GSM 1900 and WiMAX (2,5–2,69 GHz) standards. Feature of modeling of mobile phones antenna is determination of the influence of translucent case and the user to the antenna directional characteristic. Therefore it is advisable to carry out modeling with specialized programs, destined for calculation of antennas and microwave devices. Modern programs allow to carry out modeling of the antenna in the case in the presence of objects nearby a mobile phone antenna. Modern mobile phones also have a defensive layer for the user, made from radio-absorbing material. Currently, application packages for system modeling and analysis of mobile phones antennas such as HFSS, Microwave Office, Microwave studio, etc., realizing by means of numerical electromagnetic methods, such as finite elements and finite differences, are used. The article describes the features of modeling microstrip antennas of mobile phones. Electrodynamic models of antennas, operating in one and two bands, are presented. Variants of constructions, providing safe operation of the user, are offered. Electrodynamic simulation results are presented in the form of frequency characteristics of antenna and directional characteristics. Dependency of VSWR on frequency shows the possibility of a dual-band antenna realization. On basis of the presented directional characteristics it can be shown that they weakly depend on frequency.
References:

 

  1. Vishnevskij V.M., Portnoj S.L., Shakhnovich I.V. E'ntsiklopediya WiMAX. Put' k 4G. M.: Tekhnosfera. 2009.
  2. Sweeney D. WiMAX operator’s manual: Building 802.16 wireless networks (2nd ed.). Apress. 2006.
  3. Ahson S., Ilyas M. WiMAX: Applications. CRC Press. 2008.
  4. Kasim A. Delivering carrier Ethernet (Extending Ethernet beyond the LAN). McGraw–Hill Communications. 2008.
  5. Pareek D. WiMAX: Taking wireless to the MAX. Auerbach Publications. 2006.
  6. Garg V. Wireless communications and networking. Elsevier. 2007.
  7. Nikitina E.M. E'rgonomika – zashchita pol'zovatelej ot negativnykh vozdejstvij e'lektromagnitnykh polej. M.: 1998.
  8. Ratynskij M.A. Osnovy sotovoj svyazi. M.: Radio i svyaz'. 2000.
  9. Voskresenskij D.I., Ovchinnikova E.V., Buj Kao Nin'. Shirokopolosnye antenny sotovykh telefonov // Antenny. 2014. № 2. S. 27–30.
  10. Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny. M.: Radio i svyaz'.1986.
  11. Chebyshev V.V. Mikropoloskovye antenny v mnogoslojnykh sredakh. M.: Radiotekhnika. 2007.
  12. Ovchinnikova E.V., Rybakov A.M. Pechatnaya antennaya reshetka dlya bortovoj RLS santimetrovogo diapazona // Trudy 7-j mezhdunar. molodezhnoj nauchno-tekhnich. konf. «Sovremennye problemy radiotekhniki i telekommunikatsij RT–2011». (11–15 aprelya 2011. Sevastopol').
  13. Maksimov E.Yu., Yakimov A.N. Sterzhnevaya model' mikropoloskovoj antenny // Novye promyshlennye tekhnologii. Penza. 2010. № 6. S. 37–39.
  14. Ollikainen J., Kivekas O., Toropainen A., Vainikainen P. Internal dual-band patch antenna for mobile phones // Millenium Conf. on Antennas & Propagation. Davos. April 2000. CD-ROM SP–444.
  15. Gibson P.J. The Vivaldi aerial // 9th Europ. Microwave Conf. Brighton. U.K. 1979. P. 101–105.
  16. Prasad S.N., Mahapatra S. A novel MIC slot line aerial // Proc. 9th Europ. Microwave Conf. Brighton. U.K. 1979. R. 120–124.
  17. Kai Fong Lee, Wei Chen. Advances in microstrip and printed antennas. Wiley Interscience. N.-Y. 1997. P. 443.
  18. Korzeniowski T.L., Pozar D.M., Shaubert D.H., Yngvesson K.S. Imaging system at 94 GHz using tapered slot antenna elements // Proc. 8th International Conf. on Infrared and Millimeter Waives. 1983.
  19. Simons R.N., Dib N.I., Lee R.Q., Katehi L.P.B. Integrated uniplanar transition for linearly tapered slot antenna // IEEE Trans. Antennas and Propagat. 1995. V. 43. № 9. P. 998–1002.
  20. Lee J.J., Livingston S. Wideband Bunny-Ear radiating element // IEEE AP-S, International Symposium Digest. June 1993. P. 1604–1607.
  21. Gazit E. Improved design of the Vivaldi antenna // IEEE Proc. Part H. 1988. V. 135. № 2. P. 89–92.
  22. Thungren T., Kolberg E.L., Yngvesson K.S. Vivaldi antennas MIC single beam integrate receivers // 12th Europe Microwave Conf. Helsinki. 1982. P. 361–366.
  23. Liu Z.D., Hal P.S., Wake D. Dual frequency planar inverted-F antenna // IEEE Trans. on Antennas and Propagat. Oct. 1997. V. 45. № 10. P. 1451–1457.
  24. Voskresenskij D.I., Ovchinnikova E.V., Shmachilin P.A. Bortovye tsifrovye antennye reshyotki i ikh e'lementy. Ucheb. posobie. M.: Radiotekhnika. 2012.
  25. Slyusar V. Mnogodiapazonnye antenny mobil'nykh sredstv svyazi // E'lektronika: Nauka, Tekhnologiya, Biznes. 2006. № 8.
  26. Minh-Chau T.H. A numerical and experimental investigation of planar inverted-F antennas for wireless communication applications // In: Master Thesis of Science in Electrical Engineering. Virginia Polytechnic Institute and State University. Blacksburg, Virginia. 2000.
  27. Kin-Lu Wong. Planar antennas for wireless communications. N.-Y.: Wiley-Interscience. 2003.
  28. Causley A.J. Design of conformal antennas for telephone handsets // In: Bachelor of Engineering Honours Thesis. The University of Queensland. 2002.
  29. Ciais P., Luxey C., Diallo A., Staraj R., Kossiavas G. Design of internal multiband antennas for mobile phone and WLAN standards // In: Joint COST 273/284 Workshop on Antennas and Related System Aspects in Wireless Communications. Chalmers University of Technology. Gothenburg, Sweden. June 7–10, 2004.
  30. Fujimoto K., James J.R. (editors). Mobile antenna systems handbook (2nd Ed.). Artech House. 2001.
  31. Kessenikh V., Ivanov E., Kondrashov Z. Bluetooth: Printsipy postroeniya i funktsionirovaniya // Chip News. 2001. № 7. S. 54–56.
  32. Kalinichev V., Kurushin A. Mikropoloskovye antenny dlya sotovykh telefonov // Chip News. 2001. № 7. S. 6–12.
  33. Koshelev V.I. Moshchnye impul'sy sverkhshirokopolosnogo izlucheniya dlya radiolokatsii // V kn. Sverkhshirokopolosnye sistemy v radiolokatsii i svyazi. Murom: Muromskij institut (filial) Vladimirskogo gosudarstvennogo universiteta. 2003. S. 5–33.
  34. Dmitriev A.S. Shirokopolosnye i sverkhshirokopolosnye pryamokhaoticheskie sistemy svyazi / V kn. Sverkhshirokopolosnye sistemy v radiolokatsii i svyazi. Murom: Muromskij institut (filial) Vladimirskogo gosudarstvennogo universiteta. 2003. S. 34–50.
  35. Skosyrev V.N. Osobennosti i svojstva sverkhkorotkoimpul'snoj lokatsii // V kn. Sverkhshirokopolosnye sistemy v radiolokatsii i svyazi. Murom: Muromskij institut (filial) Vladimirskogo gosudarstvennogo universiteta. 2003. S. 67–91.
  36. Lodge O. Electric telegraphy / U.S. Patent 609154. Aug. 15. 1898.
  37. Ramzej V. Chastotno-nezavisimye antenny. M.: Mir. 1968.
  38. Clarke R. A high efficiency bow-tie antenna // Microwave Journal. 2001. № 8. P. 94–105.
  39. A.C. 360706 SSSR. Shirokopolosnaya antennaya reshetka.
  40. Rotkhammel' K. Antenny. M.: E'nergiya. 1979.
  41. Minin B.A. SVCh i bezopasnost' cheloveka / pod obshch. red. M.M. Levina. M.: Sov. radio. 1974.
  42. Shchelkunov G. E'lektromagnitnye izlucheniya sotovykh telefonov i zashchita ot nikh // E'lektronika: Nauka, Tekhnologiya, Biznes. 2008. № 7.
  43. Kondrat'ev D.N., Zhuravskij V.G. Ispol'zovanie nanostrukturnykh materialov dlya povysheniya nadezhnosti RE'A // Nanoindustriya. 2008. № 4. S. 14.
  44. http://spacegrad.ru/wiki/WiMAX.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio