Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Model of spatial-temporal shortwave radio line

Keywords:

D.E. Zachateysky – Senior Research Scientist, PJSC «ONIIP». E–mail: info@oniip.ru
O.V. Saltykov – Engineer-Developer, PJSC «ONIIP». E–mail: info@oniip.ru
A.N. Yuryev – Leading Engineer-Developer, PJSC «ONIIP». E–mail: info@oniip.ru


The model of narrowband multipath shortwave line, that takes into account changes in time of zenith and azimuthal angles of variable paths signal incoming, is presented hereby. The following three variants of its application are considered: 1) wave edge of each path is plane and within the modeled time interval its spatial position (that is determined on the basis of incoming angle values) is not changed. The model is applicable for modeling processes of receipt of short messages in communication systems with phased-array antennas that have 5…100 m distance between AEs; 2) wave edge of each path is plane but angles of incoming of each of the paths creep in random manner. The model is applicable for modeling of radio lines operation at time intervals up to several hours. Distance between the phased-array antenna elements are analogue to the above variant; 3) wave edge of each path differs from plane one and «flexion» of the edge changes through time in random manner. The angles of incoming of each of the paths as in the second variant creep within analyzed time interval in random manner. The model is applicable for communication systems that have antennas reception, distance between these antennas is equal to 20…25 wave lengths or more. In this case signals at antenna elements become uncorrelated, and the term «phased-array antenna» is not generally applied (instead they say about diverted reception). Thus, due to the parameters change the model modifies into Watterson model that is recommended by foreign standards for measuring the probabilistic characteristics of high-speed modems, the model for research of communication systems that include phased-array antennas and the model for reception systems to diverted antennas. The article describes ways of random processes forming that determine time changes of the line model and there are examples of measuring results of bar charts of density functions, autocorrelation functions and spectral power density.
References:
  1. Recommendation ITU-R F.1487, «Testing of HF modems with bandwidths of up to about 12 kHz using ionospheric channel simulators» // ITU-R. 2000.
  2. Metelyov S.A. Modifikaciya modeli Vatersona ionosfernogo kanala korotkovolnovoj radiosvyazi dlya adaptivnogo prostranstvenno raznesennogo priema / Izvestiya vuzov. Radiofizika. 2012. T. LV. № 4. S. 266–279.
  3. CHajka E.G., Vertogradov G.G. Ispol'zovanie dannyh tekushchej diagnostiki ionosfery v zadache KV-pelengacii i odnopozicionnogo mestoopredeleniya // Trudy XXIV Vseross. nauch. konf. «Rasprostranenie radiovoln» RRV-24. 29 iyunya – 5 iyulya 2014. Irkutsk: ISZF SO RAN. 2014. T. II. S.41–44.
  4. Bannikov I.M., Berezovskij V.A., Valeev M.M., Hazan G.K. Radiopriemnye ustrojstva i radiopriyomnye kompleksy perspektivnyh uzlov korotkovolnovoj svyazi // Materialy mezhdunar. nauch.-tekhn. konf. «Radiotekhnika, ehlektronika i svyaz' REHiS-2011. Omsk. S. 121–125.
  5. Zachatejskij D.E., Zemlyanov I.S., YUr'ev A.N. Ob odnoj vozmozhnosti realizacii modeli Vattersona // Materialy mezhdunar. nauch.-tekhn. konf. «Radiotekhnika, ehlektronika i svyaz' REHiS-2011. Omsk. S. 110–120.
  6. Watterson C.C., Juroshek J.R., Bensema W.D. Experimental Confirmation of an HF Channel Model. IEEE Trans. Comm. Technology. 1970. V. COM–18. №. 6. P. 792–803.
  7. Klovskij D.D. Peredacha diskretnyh soobshchenij po radiokanalam / M.: Radio i svyaz'. 1982.
  8. STANAG 4285. Characteristics of 1200/2400/3600 Bits per Second Single Tone Modulators/Demodulators for HF Radio Links. North Atlantic Treaty Organization. Brussels 1989.
  9. Furman W.N. and Nieto J.W. Understanding HF channel simulator requirements in order to reduce HF modem performance measurement variability // Proc. 6th Nordic Shortwave Conf. HF. Fårö. Sweden. Aug. 2001. P. 6.4.1–6.4.13.
  10. Pashincev V.P., Kolosov L.V. i dr. Primenenie teorii fazovogo ehkrana dlya razrabotki modeli odnoskachkovogo dekametrovogo kanala svyazi // Radiotekhnika i ehlektronika. 1996. T. 41. № 1. S. 21–26.
  11. SHalygin A.S., Palagin YU.I. Prikladnye metody statisticheskogo modelirovaniya. L.: Mashinostroenie. 1986.
  12. Barabashov B.G., Anishin M.M. Programmnyj kompleks prognozirovaniya traektornyh i ehnergeticheskih harakteristik radiokanalov diapazona 2–30 MGc (ch.1) // Tekhnika radiosvyazi. 2013. V. 1(19). S. 25–34.
  13. Barabashov B.G., Anishin M.M. Programmnyj kompleks prognozirovaniya traektornyh i ehnergeticheskih harakteristik radiokanalov diapazona 2–30 MGc (ch.2)» // Tekhnika radiosvyazi. 2013. V. 2(20). S. 13–21.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio