Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Analysis from positions of spin electronics of the nonlinear phenomenons and processes in 2 D thing films ferromagnetic structures under the influence of external magnetic fields of various intensity

Keywords:

G.P. Sinyavsky – Dr. Sc. (Phys.-Math.), Professor, Academician of RANS, Head of Department of Applied Electrodynamics and Computer Simulation, Faculty of Physics, Southern Federal University (Rostov-on-Don). E-mail: sinyavsky@sfedu.ru; sin-gen@yandex.ru
L.V. Cherkesova – Dr. Sc. (Phys.-Math.), Associate Professor, Department of Mathematics and Informatics, Faculty of Informatics and Computer Engineering, Don State Technical University. E-mail: chia2002@inbox.ru; larissa-cherckesova@mail.ru
G.N. Shalamov – Leading Engineer, Rostov-na-Donu Research Institute of Radiocommunication, Candidate for a Degree, Department of Applied Electrodynamics and Computer Simulation, Faculty of Physics, Southern Federal University (Rostov-on-Don). E-mail: rniirs@rniirs.ru; digital–master@mail.ru


This article is devoted to consideration of questions arising in connection with development of spintronics, concerning the nonlinear phenomena and the effects connected with parametrical resonance in ferromagnetic materials of radio-electronic equipment at influence of strong external magnetic fields. For creation of functional radioelectronics devices, using of ferrite in the form of thin magnetic films is the most perspective decision. Such film, at certain thickness, becomes one-domain. In this case, the main process of magnetic reversal is uniform rotation when the magnetic moments at the same time turn in the direction of magnetic field. In the course of magnetization of thin film steady cylindrical magnetic domains – «magnetic bubbles» are formed. These processes are of interest to creation new logical and memories devices. The process of excitement of spin wave as creation of the magnetic wave extending on film is considered. The spin magnetostatic wave (MSW) can serve as a pumping for the resonant contours formed in the course of a ferromagnetic, anti-ferromagnetic and ferrimagnetic resonance. The magnetic resonance, nuclear and electronic, arises at interaction of electromagnetic field with the magnetic moments of crystal with certain frequencies. Thus, at influence of external magnetic fields of various intensity, take place resonant absorption by ferromagnetic the energy of electromagnetic field. Typical material of radioelectronic equipment for the devices working by the principle of distribution of magnetostatic waves is the ferrite film of the iron-yttrium garnet which has been epitaxially grown up on a substrate of gallium-gadolinium garnet. Experimental investigations revealed the mechanisms of nonlinear wave processes in ferrite films, at various frequencies of microwave and terahertz diapasons. Conditions of parametrical excitement of spin waves are investigated, threshold values of microwave signals, depending from parameters films are found. The model of the one-domain magnon crystal representing periodic structure is considered. As at distribution of superficial magnetostatic waves the field of own wave is concentrated inside ferrite film, Floquet's periodic boundary conditions were considered. For the corroboration of calculation methodic of MSW in the one-dimensional magnetic crystals the method of final elements describing distribution of magnetostatic waves in these crystals is used, and the four first branches of dispersive curve were calculated and comparison of settlement data with experimental data was carried out. Important component of researches within a primitive cell of iron-yttrium garnet (IYG) is spatial distribution of tensity of electric and magnetic fields that pro-motes to investigation of qualitative picture of occurring processes. The modulation instability leads to various effects which include self-modulation and self-focusing of magnetostatic wave and possibility of wave’s formation of stationary profile, in particular, solitons of bending-around MSW, whose evolution is described by Schrödinger’s nonlinear equation. It is established that in multilayered magneto-coherent structures the dynamic properties of spin subsystem is significantly change; and new types of spin-wave excitation are realized. Due to change communication the possibilities of management signal are provided. The described effect allows carrying out the switching of high power signal between magnetic films, to similarly nonlinear switches of optical signals. The phenomenon of gigantic magnetoresistance arising at injecting of electrons through the boundary of the division of ferromagnetic layers, being high-frequency analog of magneto-refractive effect is considered. Among new perspective ferromagnetic materials multiferroics takes a special place that of interest to spintronics, the microwave-electronics and photonics. One of the most demanded multiferroics types are the magneto-ordered structures of toroidal type. Considering the high complexity of creation of frequency of magnetic properties in crystals, it is offered to use unique properties of fractal structures among which the leading role belongs to large-scale invariance. Numerical modeling of fractal structures showed that the fractal of N order has N resonances, and each resonance is defined by current of pumping excitement in the carrying-out lines of a certain order which flows in the direction to structures of higher order. The analysis of the considered processes and the phenomena in thin-film ferromagnetic materials shows that it is possible to modeling all these phenomena by means of the generalized mathematical model. The phenomenon of integrated modulation of element dynamic parameter of is investigated; being that at excess by external influence of boundary value of a linear mode the depth of parameter modulation increases and strives for limit value. After carrying out the analysis of the nonlinear phenomena and processes in thin-film ferro-structures at influence of intensive external fields, is unambiguously drawn the conclusion on possibility of implementation of the resonant schemes constructed on the basis of nonlinear parametrical zonal systems, working at ultraharmonics in the highest zones of oscillations instability in the microwave and terahertz diapasons on thin-film ferromagnetic structures.
References:

  1. Gulyaev YU.V., Zil’berman P.E., E’pshtejn E’.M. Spintronika mnogoslojny’x ferromagnetikov // Priroda. 2007. № 5. resurs www.astronet.ru/Journal/ Nature05_07 / spin.html.
  2. Kravchenko A.F. Magnitnaya e’lektronika. Novosibirsk: izd. SO RAN. 2002.
  3. Letyuk L.M., Kostishin V.G., Gonchar A.V. Texnologiya ferritovy’x materialov magnitoe’lektroniki. /M.: MISIS. 2005.
  4. Popkov A.F., Solov’ev S.V., Kulagin N.E., Zvezdin A.K. Prostranstvenno-modulirovanny’e antiferromagnitny’e struktury’ v mul’tiferroike s dvuosnoj anizotropiej // Izvestiya vuzov. E’lektronika. № 2 (94). 2012. S. 3−9.
  5. Samojlovich M.I., Tallis A.L. Kristallicheskie mul’tiferroiki i simmetriijny’e osobennosti ix magnitny’x podsistem // Nano- i mikrosistemnaya texnika. № 1. 2011. S. 31−36.
  6. Sinyavskij G.P., CHerkesova L.V., Zaichenko A.N. Analiz fizicheskix proczessov nelinejnogo rezonatora na baze nelinejny’x parametricheskix zonny’x sistem // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2012. № 6. S. 5−29.
  7. Sinyavskij G.P., CHerkesova L.V., SHalamov G.N. Sinergeticheskij podxod k issledovaniyu nelinejny’x parametricheskix zonny’x sistem, funkczioniruyushhix v vy’sshix zonax neustojchivosti kolebanij (CHast’ 1) // Fizicheskie osnovy’ priborostroeniya. 2013. T. 2. № 2. S. 4−25.
  8. Sinyavskij G.P., CHerkesova L.V., SHalamov G.N. Sinergeticheskij podxod k issledovaniyu nelinejny’x parametricheskix zonny’x sistem, funkczioniruyushhix v vy’sshix zonax neustojchivosti kolebanij (CHast’ 2) // Fizicheskie osnovy’ priborostroeniya. 2013. T. 2. № 4. S. 4−35.
  9. Sinyavskij G.P., CHerkesova L.V., SHalamov G.N., SHein A.G. Analysis of Ferromagnetic Structures Fast-Acting under the Influence of External Magnetic Fields of Various Intensity // Proceeding of IEEE East-West Design & Test Symposium 2013 (EWDTS‑13) Rostov-on-Don. Russia. Sept. 27−30. 2013. Kharkov National University of Radioelectronics. P. 360−364.
  10. Sinyavskij G.P., CHerkesova L.V., SHalamov G.N., SHein A.G. O sozdanii logicheskix e’lementov na baze NPS, rabotayushhix v vy’sshix zonax neustojchivosti kolebanij, i sposoby’ ix realizaczii na novy’x texnologiyax // Trudy’ I Ros.-Belorus. nauchn.-texn. konf. «E’lementnaya baza otechestvennoj radioe’lektroniki», posvyashh. 110 – letiyu so dnya rozhd. O.V. Loseva. 11−14 sent. 2013 g. N. Novgorod.: Nizhegorodskaya radiolaboratoriya. 2013. V 2‑x t. T. 1. S. 91−96.
  11. CHerkesova L.V. Postroenie i analiz matematicheskoj modeli nelinejny’x proczessov v parametricheskom rezonatore pri asimmetrii ego vnutrennej struktury’ i garmonicheskom vneshnem vozdejstvii // Uspexi sovremennoj radioe’lektroniki. 2009. № 8. S. 16−29.
  12. CHerkesova L.V. Poluchenie invariantov dvizheniya rezonansnoj nelinejnoj parametricheskoj zonnoj sistemy’ bez poter’ pri slaboj i sil’noj nelinejnosti // Nelinejny’j mir. 2010. № 9. S. 537−544.
  13. CHerkesova L.V. Vzaimosvyaz’ zon neustojchivosti rezonansnoj nelinejnoj parametricheskoj zonnoj sistemy’ bez poter’ s ix fazovy’mi portretami // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2010. № 6. S. 14−30.
  14. CHerkesova L.V. Vzaimosvyaz’ zon neustojchivosti kolebanij sil’no nelinejnoj parametricheskoj zonnoj sistemy’ s uchetom poter’ s ee fazovy’mi portretami // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2010. № 4. S. 6−19.
  15. CHerkesova L.V. Issledovanie zavisimosti amplitudy’ parametricheskix kolebanij nelinejnogo rezonatora ot amplitudy’ i chastoty’ nakachki // Uspexi sovremennoj radioe’lektroniki. 2010. № 8. S. 3−11.
  16. CHerkesova L.V., Zaichenko A.N. Issledovanie funkczij svyazi, opredelyayushhix vzaimodejstvie mezhdu nakachkoj i kolebaniyami rezonansnoj sistemy’ v vy’sshix zonax neustojchivosti kolebanij // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2011. № 10. S. 5−18.
  17. CHerkesova L.V. Postroenie matematicheskoj modeli i analiz e’nergeticheskix proczessov asimmetrichnogo, sil’no nelinejnogo parametricheskogo zonnogo rezonatora pri poligarmonicheskom vneshnem vozdejstvii // Uspexi sovremennoj radioe’lektroniki. 2010. № 1. S. 5−19.
  18. SHaraevskij YU.P., Grishin S.V., Beginin E.N., Malyugina M.A. Nelinejny’e linii peredachi na magnitostaticheskix volnax i perspektivy’ ix primeneniya dlya generaczii i obrabotki signalov v diapazone sverxvy’sokix chastot // Uspexi sovremennoj radioe’lektroniki. 2008. № 9. S. 36−47.
  19. Sadovnikov A.V., Rozhkov A.G. Modelirovanie rasprostraneniya magnitostaticheskix voln v odnomerny’x magnonny’x kristallax // Izvestiya vuzov. Prikladnaya nelinejnaya dinamika. 2012. № 1. t. 20. S. 143−159.
  20. Gulyaev YU.V., Zil’berman P.E., Malikov I.V. i dr. Nablyudenie spin-inzhekczionnogo teragerczevogo izlucheniya v planarny’x ferromagnitny’x dvuxslojny’x strukturax // Radiotexnika i e’lektronika. 2012. t. 57. № 3. S. 359−364.
  21. Granovskij A.B., Gan’shina E.A., YUrasov A.N. i dr. Magnito-refraktivny’j e’ffekt v nanostrukturax, manganitax i magnitofotonny’x kristallax na ix osnove // Radiotexnika i e’lektronika. 2007. t. 52. № 9. S. 1152−1159.
  22. Kasatkin S.I., Vasil’eva N.P., Murav’ev A.M. Spin-ventil’ny’e i spin-tunnel’ny’e magnitorezistivny’e nanoe’lementy’ i ustrojstva na ix osnove // Datchiki i sistemy’. 2011. № 6. S. 63−71.
  23. Gulyaev YU.V., Bugaev A.S., Mityagin A.YU. i dr. Perspektivy’ ispol’zovaniya segnetoe’lektrikov dlya ustrojstv SVCH-diapazona // Uspexi sovremennoj radioe’lektroniki. 2011. № 12. S. 3−10.
  24. Gulyaev YU.V., Nikitov S.A. Fotonny’e i magnitofotonny’e kristally’ – novaya sreda dlya peredachi informaczii // Radiotexnika. 2003. № 8. S. 4−21.
  25. SHalamov G.N. Fraktaly’, fraktal’ny’e antenny’, chastotno-izbiratel’ny’e poverxnosti i metamaterialy’ na osnove fraktal’ny’x texnologij. SHirokopolosny’e i chastotno-nezavisimy’e resheniya // Obshhie voprosy’ radioe’lektroniki. NTS. 2010. № 1. S. 43−64. Rostov-na-Donu: FNPCZ «Rostovskij-na-Donu nauchno-issled. in‑t radiosvyazi».
  26. CHerkesova L.V. Vozdejstvie sil’ny’x vneshnix e’lektromagnitny’x polej nakachki na materialy’ radioe’lektronnoj texniki s domennoj strukturoj // Nelinejny’j mir. 2011. № 5. t. 9. S. 317−323.
  27. Romanchenko D.V. Generacziya xaoticheskoj posledovatel’nosti SVCH-impul’sov v avtokolebatel’noj sisteme s ferromagnitnoj plenkoj // Izvestiya vuzov. Prikladnaya nelinejnaya dinamika. 2012. № 1. t. 20. S. 67−74.
  28. Antonov I.N., Lavkin A.G. Stoxasticheskij avtogenerator na diode Ganna s magnitnoj perestrojkoj // Antenny’. 2011. № 11. S. 39−43.
  29. Sorochak A.M., Kostenko V.I., CHamor T.G. i dr. Impul’sno-pereklyuchaemy’j SVCH-rezonator na monokristallicheskom geksaferrite // Izvestiya vuzov. Radioe’lektronika. 2011. № 8. t. 54. S. 13−17.
  30. Petrov R.V. Issledovanie magnitoe’lektricheskogo shhelevogo rezonatora SVCH-diapazona // Inzhenernaya fizika. 2012. № 1. S. 33−38.
  31. Ignat’ev A.A., Lyashenko A.V. Magnitoe’lektronika SVCH- , KVCH-diapazonov chastot v plenkax ferritov. M.: Nauka. 2005.
  32. CHumakov V.M. Pomnit’ vse./ V mire nauki. 2012. № 8. S. 39−45.
  33. Lukas M. Spintronika na sluzhbe xraneniya // Computer World (Rossiya). 2012. № 20. S. 18.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio