Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Using non-quadratic regularization for separation of rays in quasi stationary radio channel

Keywords:

Using non-quadratic regularization for separation of rays in quasi stationary radio channel M.S. Penzin – Junior Research Scientist, Institute of Solar-Terrestrial Physics SB RAS. E–mail: penzin.maksim@gmail.com
N.V. Il'in – Ph.D. (Phys.-Math.), Leading Research Scientist, Institute of Solar-Terrestrial Physics SB RAS. E–mail: ilyin@iszf.irk.ru


We consider the approach that allows to separate rays in the quasi-stationary radio channel in shortwave bands. The considered approach can be used when the Doppler filtration, angles of arrival, polarization, and delays cannot separate rays. The received signal is a result of interference of several rays. In this case the problem of ray separation is non-correct and allows the set of solutions. The non-quadratic regularization using to non-correct problems is considered in this paper. Using the non-quadratic regularization allow us to obtain higher resolution than spectrum methods.
References:

  1. Jolliffe I.T. Principal Component Analysis // New York: Springer. 2002. Р. 487.
  2. Hyvarinen A., Oja E. Independent Component Analysis: Algorithms and Applications // Neural Networks. 2000. V. 13. P. 411–430.
  3. Hayes M.H. Signal Processing and Modeling // New York: John Wiley & Sons. 1996. Р. 621.
  4. Cetin M., Malioutov D.M., Willsky A.S. A variational technique for source localization based on a sparse signal reconstruction perspective // Proc. IEEE International Conference of Acoustic. Speech. and Signal Processing. 2002. V. 3. P. 2965–2968.
  5. Tihonov A.N. Ob ustojchivosti obratnyh zadach // Doklady Akademii nauk SSSR. 1943. T. 39, № 5. S. 195–198.
  6. Chen S.S., Donoho D.L., Saunders M.A. Atomic decomposition by basis pursuit // SIAM J. Scientific Computing. 1998. V. 20, № 1. P. 33–61.
  7. Fu W.J. Penalized regressions: the bridge versus the LASSO // Journal of Computational and Graphical Statistics. 1998. V. 7, № 3. P. 397–416.
  8. Vogel C.R., Oman M.E. Fast, robust total variation-based reconstruction of noisy, blurred images // IEEE Trans. Image Processing. 1998. V. 7. № 6. P. 813–824.

June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio