Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Analysis of ferromagnetic structures fast–acting under the influence of external magnetic fields of various intensit


A.G. Shein – Dr. Sc. (Phys.-Math.), Professor, Head of Department of «Physics» of Faculty of Electronics and Computing Technique, Volgograd State Technical University. E–mail:
G.P. Sinyavsky – Dr. Sc. (Phys.-Math.), Professor, Head of Department of «Applied Electrodynamics and Computer Modelling» of Physical Faculty, Southern Federal University. E–mail:
L.V. Cherkesova – Ph. D. (Eng.), Dr. Sc. (Phys.-Math.), Associate Professor, Department of «Mathematics and Informatics» of the Faculty «Informatics and Computer Technique» of Don State Technical University. E–mail:
G.N. Shalamov – Chief Engineer of «Rostov-on-Don Scientific Research Institute of Radio Communication». E–mail:

Article is directed on research of radiophysical development of rapid processes in radioelectronic devices in which ferromagnetic materials with domain structure are applied, at impact on them external magnetic fields of different intensity, and on investigation of possible ways of acceleration of processes proceeding in them. This scientific work is devoted to prospects of radioelectronic equipment creation – microwave and terahertz ranges on the basis of the nonlinear parametrical zonal systems (NPS), working at ultraharmonics, in the highest zones of instability of electromagnetic oscillations. NPS represents the kind of the resonant nonlinear parametrical zonal converters using the principle of parametrical resonance which functioned earlier only on subharmonics or at combinational frequencies. Authors investigate the possibilities of creation and accommodation of NPS–structures on the thin films (2D–ferromagnetic materials), as a part of composite environments, whereas still today similar parametrical converters were carried out only by means of traditional volume (3D) materials. It is known that widely applied technology of magneto-resistive memory MRAM (Magnetoresistive Random Access Memory) in essence goes back to memory on magnetic cores (which still it is successfully applied in computer stores on hard magnetic disks – Winchesters), but is realized with use of thin magnetic films. Thus the MRAM technology has a number of advantages in comparison with the SRAM and FLASH technologies, which is in detail analyzed in the article. Having studied features of behavior of ferromagnetic materials at impact on them magnetic fields of various intensity, having investigated the differences of volumetrical (3D) and planar (2D) thin–film ferromagnetic materials at impact on them magnetic fields of various intensity, authors conducted the researches of the nonlinear phenomena in ferromagnetics. The domain structure of multiferroics is considered, radiophysical processes in the nonlinear ferromagnetic environment – i.e. a nonlinear parametrical resonance, and parametrical generation and strengthening (amplifying) of electromagnetic oscillations are investigated. The special attention is paid to the typically used material of the radioelectronic devices using magnetostatic waves (MSW–devices) – ferro–yttrium garnet (Y3Fe5O12) film. This film is epitaxially grown on the gallium–gadolinium garnet (Gd3Ga5O12) substrate. By change of boundary conditions of dissemination of MSW (for example, metallization of the borders) in the plate, it is possible to change their spectrum. Functional possibilities of magnetostatic spin waves can be expanded at creation of multilayered structures, at their interaction with the optical waves and with free carriers of electric charges in semiconductors. The potential of MSW can be used especially successfully in the field of development of nonlinear effects, where they can be used as external influence (rating) for resonant oscillatory contours – NPS, working at ultraharmonics, in the highest zones of instability of oscillations, and created and accommodated on the film of ferro–yttrium garnet. It is established that the time of transitional processes in NPS, working at ultraharmonics of current in the highest zones of instability of oscillations, is reduced considerably, and aspires (tends) to zero due to spasmodic phase transition. For the devices implemented on the planar thin–film 2D structures, the fast-acting is even some orders higher, and lies in the field of nanoseconds. All aforesaid gives the chance to find the ways of increasing the fast–acting of the radioelectronic equipment, functioning at ultraharmonics, on the planar (2D) thin–film technologies, in strongly nonlinear ferromagnetic environment, corresponding to the mode of magnetization saturation. It is established that using even traditional volumetrical (3D) ferromagnetics, it is possible to create the ultrafast–acting devices working in the microwave ranges of frequencies. Experimental investigations of the magneto–electronic devices, working with using of monocrystal ferrite in non–saturated mode, promoted to creation of the generating elements, controlling generators of noise, multipurpose synthesizers the equidistant grids of frequencies, etc. The application of thin films (2D–elements) on the basis of multi–domain structures, cylindrical formations of magnetic domains and super grids, as it is noted above, promote to substantial increase of devices fast–acting on some orders. The perspective direction of such devices creation at the level of micro- and nanotechnologies lies in the field of use of composite materials (the layered structures using ferromagnetic inclusions). The RAMA technology can be an example. Thus, all this allows increasing devices fast–acting on the basis of NPS, functioning in the highest zones of instability oscillations, on some orders, even applying to their production the traditional volumetrical ferromagnetic materials. For thin–film structures the fast–action increases on some orders more, and lies in the field of nanoseconds, as will allow improving MRAM as nanotechnology.

  1. Judincev V. Post–KMOP struktury: global'nyj vyzov nanojelektroniki // Jelektronika NTB. 2012. № 3. P. 48–58.
  2. Merian Lukas Spintronika na sluzhbe hranenija informacii // Computer World (Rossija). 2012. № 20. P. 18–25.
  3. Ignat'ev A.A., Ljashenko A.V. Geteromagnitnaja mikrojelektronika. Mikrosistemy aktivnogo tipa // M.: Nauka. 2006.
  4. Letjuk L.M., Kostishin V.G., Gonchar A.V. Tehnologija ferromagnitnyh materialov magnitojelektroniki // M.: MISIS. 2005.
  5. Kravchenko A.F. Magnitnaja jelektronika // Novosibirsk: SORAN. 2002.
  6. Najden E.P., Rodionov V.A. Analiz osnovnogo sostojanija ferromagnitnoj chasticy // Izv. VUZov. Fizika. 2012. T. 55. № 4. P. 48–52.
  7. Vashkovskij A.V., Stal'mahov V.S., Sharaevskij Ju.P.Magnitostaticheskie volny v jelektronike sverhvysokih chastot // Saratov: SGU. 1993.
  8. Popkov A.F., Zvezdin K.A., Chinenkov M.Ju. i dr.Spinovyj transport i problemy magnitnoj operativnoj pamjati (MRAM) // Inzhenernaja fizika. 2012. № 9. P. 19–34.
  9. Ignat'ev A.A., Ljashhenko A.V. Magnitojelektronika SVCh– KVCh–diapazonov chastot v plenkah ferritov // M.: Nauka. 2005.
  10. Semikov S. Uprjamaja zagadka magnetizma // Inzhener. 2012. № 11. P. 26–29.
  11. Semikov S. Uprjamaja zagadka magnetizma // Inzhener. 2012. № 12. P. 26–29.
  12. Chumakov V. Pomnit' vsjo // V mire nauki. 2012. № 8. P. 39–45.
  13. Popkov A.F., Solov'jov S.V., Kulagin N.E., Zvezdin A.K. Prostranstvenno–modulirovannye antiferromagnitnye struktury v mul'tiferroike s dvuosnoj anizotropiej // Izv. VUZov. Jelektronika. 2012. № 2 (94). P. 3–9.
  14. Samojlovich M.I., Talis A.L. Kristallicheskie mul'tiferroiki i simmetrichnye osobennosti ih magnitnyh podsis-tem // Nano- i mikrosistemnaja tehnika. 2011. № 1. P. 31–36.
  15. Chenakin A. GUN ili ZhIG? Problema vybora pri proektirovanii vysokokachestvennogo sintezatora s FAPCh // Jelektronika NTB. 2012. № 6. P. 118–122.
  16. Cherkesova L.V. Postroenie i analiz matematicheskoj modeli nelinejnyh processov v parametricheskom rezonatore pri asimmetrii ego vnutrennej struktury i garmonicheskom vneshnem vozdejstvii // Uspehi sovremennoj radiojelektroniki. 2009. № 8. P. 16–29.
  17. Cherkesova L.V. Poluchenie invariantov dvizhenija rezonansnoj nelinejno-parametricheskoj zonnoj sistemy bez poter' pri slaboj i sil'noj nelinejnosti // Nelinej-nyj mir. 2010. № 9. P. 537–544.
  18. Cherkesova L.V. Vzaimosvjaz' zon neustojchivosti rezonansnoj nelinejnoj parametricheskoj zonnoj sistemy bez poter' s fazovymi portretami // Jelektromagnitnye volny i jelektronnye sistemy. 2010. № 6. P. 14–30.
  19. Cherkesova L.V. Vzaimosvjaz' zon neustojchivosti kolebanij sil'no nelinejnoj parametricheskoj zonnoj sistemy s uchjotom poter' s ejo fazovymi portretami // Jelektromagnitnye volny i jelektronnye sistemy. 2010. № 4. P. 6–19.
  20. Cherkesova L.V. Issledovanie zavisimosti amplitudy parametricheskih kolebanij nelinejnogo rezonatora ot amplitudy i chastoty nakachki //Uspehi sovremennoj radiojelektroniki. 2010. № 8. P. 3–11.
  21. Cherkesova L.V. Issledovanie funkcij svjazi, opredeljajushhih vzaimosvjaz' mezhdu nakachkoj i kolebanijami rezonansnoj sistemy v vysshih zonah neustojchivosti // Jelektromagnitnye volny i jelektronnye sistemy. 2011. № 10. P. 5–18.
  22. Cherkesova L.V. Postroenie matematicheskoj modeli i analiz jenergeticheskih processov sil'no nelinejnogo asimmetrichnogo parametricheskogo zonnogo rezonatora pri poligarmonicheskom vneshnem vozdejstvii // Uspehi sovremennoj radiojelektroniki. 2010. № 1. P. 5–19.
  23. Cherkesova L.V. Vozdejstvie sil'nyh vneshnih jelektromagnitnyh polej nakachki na materialy jelektronnoj tehniki s domennoj strukturoj // Nelinejnyj mir. 2011. № 5. T. 9. P. 317–323.
  24. Cherkesova L.V. Parametricheskij zonnyj taktovyj metod i ustrojstva peredachi i prijoma informacii // Radiotehnika. 2011. № 10. P. 36–44.
  25. Bulgakov B.M., Cherednikov P.I. Nekotorye primenenija parametricheskih sistem na magnitnyh jelementah v sistemah avtomatiki. Kiev. 1970.
  26. Bulgakov B.M., Cherednikov P.I., Stepanov V.P. Issledovanie parametricheskogo usilitelja–moduljatora // Radiotehnika i jelektronika. 1974. № 8. P. 1674‑1680.
  27. Pevzner V.V., Polonnikov D.E. Usiliteli postojannogo toka s upravljaemymi generatorami. M.: Jenergija. 1970.
  28. Alexander G. Shein, Gennady P. Sinyavsky, Larissa V. Cherkesova, George N. Shalamov Analysis of Ferromagnetic Structures Fast–Acting under the Influence of External Magnetic Fields of Various Intensity // Proceeding of IEEE East-West Design & Test Symposium 2013 (EWDTS’13) Rostov–on–Don. Russia. 2013. September 27–30. Kharkov National University of Radioelectronics – Don State Technical University – Southern Federal University. P. 360–364.
  29. Shein A.G., Sinjavskij G.P., Cherkesova L.V., Shalamov G.N. O sozdanii logicheskih jelementov na baze NPS, rabotajushhih v vysshih zonah neustojchivosti kolebanij, i sposoby ih realizacii na novyh tehnologijah // Materialy I Mezhdunar. Ros.-Belorus. nauch.-tehn. konf. «Jelementnaja baza Otechestvennoj radiojelektroniki», posv. 110-ju so dnja rozhd. O.V. Loseva. N. Novgorod, 2013. 11–14 sent. RNTORJeS im. A.S. Popova. T. 1. P. 91–96.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio