Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

The role of some external factors at synthesis processes of ultrafine copper particles

Keywords:

I.V. Chepkasov – Ph.D. (Phys.-Math.), Khakas State University, Abakan. E-mail: ilya_chepkasov@mail.ru
Yu.Ya. Gafner – Dr.Sc. (Phys.-Math.), Professor, Head of Department, Katanov Khakass State University, Abakan. Е-mail: ygafner@khsu.ru


Nowadays there are a lot of areas of nanotechnologies that require metal nanoparticles of the definite strict shape and size. Such geometrical characteristics of nanoparticles are mainly determined by the process of their growth. This work represents the basic mechanisms that were studied on the example of copper that were responsible for the formation of metallic nanoclusters in real synthesis processes. The method of condensation from the gas phase was chosen as a method of producing of ultrafine dispersed materials. Gas-phase condensation of 85000 copper atoms is examined by molecular dynamics simulation with a tight-binding potential TB-SMA. In order to study the influence of the cooling rate of synthesizing particles and their structure, the cooling of this system with three different cooling rates U = 0,005 ps1, U = 0,025 ps1 and U = 0,05 ps1. As a result of modeling the basic mechanisms of formation nanocrystalline particles in the course of free condensation of primary atoms of copper have been considered. It was shown that depending on the size and temperature of the binding nanoclusters the process of ultimate nanoparticle formation can pass through several basic scenarios.Thus, it was shown that with the help of regulating of temperature parameters it is possible to achieve a particular frequency realization of this or that scenario of forming appearance and size of the nanocrystalline particles.
References:

  1. Weber A.P., Davoodi P., Seipenbusch M. and Kasper G. Size effects in the catalytic activity of unsupported metallic nanoparticles // Journal of Nanoparticle Research. 2003. V. 5. P. 293–298.
  2.  Weber A.P., Seipenbusch M., Thanner C. and Kasper G. Aerosol catalysis on nickel // Journal of Nanoparticle Research. 1999. V. 1. P. 253–265.
  3.  Fissan H., Kennedy M.K., Krinke T.J. and Kruis F.E. Nanoparticles from the gas phase as building blocks for electrical devices // Journal of Nanoparticle Research. 2003. V. 5. P. 299–310.
  4. Vorontsov A.G. Gel'chinskiy B.R. Korenchenko A.Ye. Kinetika i energeticheskie sostoyaniya nanoklasterov v nachal'noy stadii protsessa gomogennoy kondensatsii pri vysokikh stepenyakh perenasyshcheniya // ZhETF. 2012. T. 142. № 5. S. 897–907.
  5.  Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces and other defects v metals // Phys. Rev.V. 1984. V. 29. R. 6443–6453.
  6.  Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys // Phys. Rev.V. 1986. V. 33. P. 7983–7991.
  7.  Nguyen N.H., Henning R., Wen J. Z. Molecular dynamics simulation of iron nanoparticle sintering during flame synthesis // Journal of Nanoparticle Research. 2011. V. 13. P. 803–815.
  8.  Kesälä E., Kuronen A., Nordlund K. Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation // Phys. Rev.V. 2007. V. 75. P. 174121.
  9.  Rosato V., Guillopé M., Legrand B. Thermodynamical and structural-properties of FCC transition-metals us using a simple tight-binding model // Philos. Mag. 1989. V. 59. P. 321–336.
  10.  Stillinger F.H., Weber T.A. Computer simulation of local order in condensed phases of silicon // Phys. Rev. 1985. V. 31. P. 5262–5271.
  11.  Krasnochtchekov P., Albe K., Ashkenazy Y., Averback R.S. Molecular-dynamics study of the density scaling of inert gas condensation // J. Phys. Chem. 2005. V. 123. P. 154314.
  12. Gafner S.L., Redel' L.V., Gafner Yu.Ya. On the problem of the formation of structural modifications in Ni nanoclusters // The Physics of Metals and Metallography. 2007, V. 104. № 2. P. 189–195.
  13. Gafner S.L., Kosterin S.V., Gafner Yu.Ya. Formation of structural modifications in copper nanoclusters. //The Physics of the Solid State. 2007. V. 49. № 8. P. 1558–1562.
  14. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys // Phys. Rev.V. 1993. V. 48. P. 22–33.
  15. Krissinel E.B., Jellinek J. 13-atom Ni-Al alloy clusters: Structures and dynamics // J. Quant. Chem. 1997. V. 62. P. 185–197.
  16. Kheerman D.V. Metody komp'yuternogo eksperimenta v teoreticheskoy fizike. M.: Nauka. 1990. 176 s.
  17. Honeycutt J. D. and Anderson H. C. Molecular dynamics study of melting and freezing of small lennard-jones clusters // J. Chem. Phys. 1987. V. 91. P. 4950–4963.
  18. Meyer R.J. Computersimulationen martensitischer Phasenübergänge in Eisen-Nickel- und Nickel-Aluminium-Legierunger // Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte. – Duisburg, 1998. – 143 p.
  19. Gafner S.L., Gafner Yu.Ya. Analiz protsessov kondensatsii nanochastits Ni iz gazovoy fazy // ZhETF. 2008. T. 134. № 4. S. 831–844.
  20. Krasnechtchekov P., Albe K. and Averback R.S. Simulations of the1 inert gas condensation process. // Z. Metallkd. 2003. V. 94. P. 1098.

June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio