Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Improving performance of printed biconical antenna by use of artificial dielectric

Keywords:

A.S. Avdyushin – JSC «IRCOS»
A.V. Ashikhmin – Dr. Sci. (Eng.), professor, JSC «IRCOS»
Yu.G. Pasternak – Dr. Sci. (Eng.), professor, Voronezh Technical State University
S.M. Fedorov – Ph.D. (Eng.)
V.I. Chuguevskiy – Post-graduare student, Voronezh Technical State University


Aim of article is to study the possibility and efficiency of input resistance transformation of flat biconical vibrator in ultrawide band by coating it with metal electrically small plates located on both sides of thin antenna dielectric. Mathematical modeling showed that lowering an efficiency of antenna including losses in transformer foe researched frequency range from 0.5 to 3 GHz does not exceed 0.35 dB. Found that use of artificial dielectric in form of two-dimensional lattice of small plates (square shaped solid plates and a square framework) allows transforming the input impedance of printed biconical vibrator in ultrawide bandwidth and improving quality of its matching. Also, it was found that use of artificial dielectric can eliminate deep dip in radiation pattern of flat biconical dipole in normal direction to its plane in high-frequency operation area of antenna. Experimental study of proposed antenna model showed that use of artificial dielectric leads to improved antenna matching.
References:

  1. Lagarkov A.N., Sarychev A.K. Electromagnetic properties of composites containing elongated conducting inclusions // Phys. Rev. 1996. V. 53. R. 6318-6336.
  2. Podolskiy V.A., Sarychev A.K., Shalaev V.M. Plasmon modes in metal nanowires and lefthanded materials // J. Nonlinear Opt. Phys. Mater. 2002. V. 11. P. 65-74.
  3. Shalaev V.M., Cai W.S., Chettiar U.K., Yuan H.K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials // Opt. Lett. 2005. V. 30. P. 3356-3358.
  4. Cai W., Shalaev V. Optical Metamaterials. Fundamentals and Applications. Springer. 2010. 200 p.
  5. Iyer A.K., Eleftheriades G.V. Negative refractive index metamaterials supporting 2-D waves // IEEE MTT-S Int. Microwave Symp. Dig. 2002. V. 2. Seattle. WA. P. 1067–1070.
  6. Caloz C., Itoh T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line // Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting. 2002. V. 2. P. 412–415.
  7. Oliner A.A. A periodic-structure negative-refractive-index medium without resonant elements. In URSI Dig. // IEEE-AP-S USNC/URSI National Radio Science Meeting. 2002. P. 41, San Antonio.
  8. Liu L., Caloz C., Chang C., Itoh T. Forward coupling phenomenon between artificial left-handed transmission lines // J. Appl. Phys. 2002. V. 92. 9. pp. 5560-5565,
  9. Eleftheriades G.V., Iyer A.K. Planar Negative Refractive Index Media Using Periodically L–C Loaded Transmission Lines // IEEE Trans. Microw. Theory Techniques. 2002. V. 50. № 12. P. 2702-2712.
  10. Lai A., Caloz C., Itoh T. Composite Right/Left-Handed Transmission Line Metamaterials // IEEE Microwave Magaz. 2004. P. 34-50.
  11. Caloz C., Itoh T. Metamaterials for High-Frequency Electronics // Proc. IEEE. 2005. V. 93. № 10. P. 1744-1752. Oct.

May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio