Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Artificial dielectric with surface synthesized for reflection of electromagnetic waves of microwave range


A.S. Avdyushin – JSC "IRCOS" (Voronezh, Russia)
A.V. Ashikhmin – Dr.Sc. (Eng.), Professor, Director, JSC "IRCOS" (Voronezh, Russia), chief engineer, JSC "IRCOS" (Moscow, Russia)
I.A. Zelenin – Associate Professor, Voronezh Technical State University
Yu.G. Pasternak – Dr.Sc. (Eng.), Professor, Voronezh Technical State University
S.M. Fedorov – Ph.D. (Eng.), Voronezh Technical State University

The authors studied two approaches to creating reflective phased arrays: one based on reflective waveguide phase shifters and another based on manageable artificial dielectric. The study found that in phased array antenna with reflective phase shifters based on broadband transition from short-to-wire metallic waveguide to transmission line, instant working frequency band is limited due to the uneven frequency dependencies phases of reflected waves. To expand operating frequency band is proposed and studied principle of reflective phased arrays based on manageable artificial dielectric which reflective surface is synthesized by closing of required combination of electrically short wires using MEMS-switches. Argumentation for choice of such approach is given. It was found that in proposed artificial dielectric a value of reflected wave phase can be adjusted over a wide frequency range from 0 to 360 degrees, and frequency dependence of phase corresponding to the different sections of the reflection plane location, and also because of isotropy of proposed basic artificial dielectric managed by use of optic-actuated MEMS-switches, wave polarization can be arbitrary.

  1. Hansen R. C. Phased Array Antennas // A Wiley-Interscience Publication. 2001. John Wiley & Sons, Inc. New York. 486 p.
  2. Mailloux R.J. Phased Array Antenna Handbook. Second Edition // Artech House, Inc. Norwood. 2005. 496 p.
  3. Huang J., Encinar J.A. Reflectarray Antennas // John Wiley & Sons, Inc., Hoboken, New Jersey. 2008. 216 p.
  4. Vendik O.G. Principles of Synthesis of Steerable Reflect-array Antennas // Progress In Electromagnetics Research Symposium 2006. Cambridge. USA. March 26-29. P. 126-129.
  5. Legay H., Bresciani D., Chiniard R., Girard E. Reflector Array and Antenna Comprising Such a Reflector Array // Patent application number: 20100085272. Publication date: 2010-04-08.
  6. Gupta K.C. Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity // Electronics Letters. 1971. V. 7. I. 1. P. 16-18.
  7. Buscher Harold T. Electrically Controllable Liquid Artificial Dielectric Media // Microwave Theory and Techniques. IEEE. 1979. V. 27, I. 5. P. 540–545.
  8. Bahl I.J., Bhartia P. Leaky-wave antennas using artificial dielectrics at millimeter wave frequencies // IEEE Transactions on Microwave Theory and Techniques. V. MTT-28. Nov. 1980. Pt. 1. P. 1205-1212.
  9. McKinzie W.E., Garrett S.L., Lilly J.D. Tunable reduced weight artificial dielectric antennas // Patent US 6646605 B2. US 2002/0057222 A1. Publication date: 2002-05-16.
  10. McKinzie W.E. Reconfigurable artificial magnetic conductor using voltage controlled capacitors with coplanar resistive biasing network // Patent US 6525695 B2. US 2002/0167456 A1. Publication date: 2002-11-14.
  11. Daquan Huang, Hant W., Ning-Yi Wang, Ku T.W., Qun Gu, Wong R., Chang M.-C.F. A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction // Solid-State Circuits Conference, 6-9 Feb 2006. ISSCC 2006. Digest of Technical Papers. IEEE International. San Francisco. CA. P. 1218 – 1227.
  12. Awa I. Artificial Dielectric Resonators for Miniaturized Filters // Microwave Magazine. IEEE. 2008. V. 9. I. 5. P. 55-64.
  13. LaRocca T., Sai-Wang Tam, Daquan Huang, Qun Gu, Socher E., Hant W., Chang F. Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable Ics // Microwave Symposium Digest, 15-20 June 2008. IEEE MTT-S International. Atlanta. GA. P. 181-184.
  14. Ren M., Huang J., Cai H., Tsai J.M., Zhou J., Liu Z., Suo Z., Liu A.Q. Nano-optomechanical Actuator and Pull-Back Instability // ACSNANO. 2013. V. 7. № 2. P. 1676-1681.
  15. Zhao X., Tsai J.M., Cai H., Ji X.M., Zhou J., Bao M.H., Huang Y.P., Kwang D.L., Liu A.Q. A nano-opto-mechanical actuator driven by optical radiation force // Transducers’11. Beijing. China. June 5-9. 2011. P. 1468-1471.
  16. Pandey M. Entrainment and Anchor Loss Reduction in an Optically Actuated MEMS.: Modeling, Analysis and Experimental Verification Paperback // VDM Verlag. Saarbrücken. 2008. 120 p.
  17. Pandey M. Analysis of entrainment and clamping loss in an optically actuated MEMS // PhD Dissertation. Cornell University. New York. 2008. 92 p.
  18. Khoury J., Drehman A., Woods C.L., Haji-Saeed B., Sengupta S.K., Goodhue W., Kierstead J. Optically driven microelectromechanical-system deformable mirror under high-frequency AC bias // Optics Letters. 2006. V. 31. № 6. March 15. P. 808-810.
  19. Mathur V., Vangala S.R., Qian X., Goodhue W.D., Haji-Saeed B., Khoury J. An all optically driven integrated deformable mirror device // App. Phys. Letter. 2010. V. 96. P. 211103.
  20. Bergman L., McHale J.L. Handbook of Luminescent Semiconductor Materials // CRC Press. Boca Raton. Florida. 2011. 468 p.

May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio