Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Light frequency conversion effect caused by source acceleration and criteria for its experimental testing

Keywords:

S. A. Semikov – Engineer of the General Physics Department, Lobachevsky State University of Nizhny Novgorod. E-mail: sergey-semikov@yandex.ru


Ballistic theory of light is a classical theory proposed in 1908 by a Swiss physicist Walter Ritz which claims that light velocity depends on velocity of the source which is added vectorially to velocity of the light emitted by it. The majority of experiments and observations, including observations of binary stars, experiments with synchrotron and annihilation radiation, do not contradict to ballistic theory. Objections against Ritz theory which can be found in literature are untenable, as has been shown by a number of authors, because in this kind of experiments effect of light re-emission by the medium was not taken into account and the values and directions of light source velocities were not measured directly. Consideration of re-emission and the right measurement of source velocity could lead to confirmation of ballistic theory. We show that a certain effect follows from ballistic theory – Ritz effect – that is an effect of change of light frequency, power and duration of light pulses proportionally to source acceleration and distance covered by the light. The effect is caused by the fact that at accelerated motion of the source towards the receiver wave fronts gaining larger and larger velocities at the moments of emission, approach one another shortening the wavelength and the period of light oscillations registered by the receiver. If acceleration of the source a is directed from the receiver than wave fronts drift apart, increasing the wavelength and the period of light oscillations registered by the receiver. The above-mentioned effect which changes wavelength and duration of light signals allows to explain distortion of observed motions and curves of radial velocities of binary stars (the Barr effect) as well as variations of brightness and color of variable stars belonging to binary systems in the course of variations of their radial acceleration at orbital motion. Apart from that, Ritz effect allows to qualitatively and quantitatively explain the Hubble law of redshift, that is the increase of wavelength of galactic light proportionally to their distance due to the presence of stars acceleration of characteristic value in the visible part of galactic nuclei directed from us towards the centers of galaxies. The effect also explains a number of paradoxes of redshift. We propose the schemes for devices for testing Ritz effect and transformation of light frequency under Earth conditions. Due to the fact that for laboratory distances L ~ 1 m transformation of light frequency is relevant only at source acceleration a ~ 1017 m/s2, the only possibility to observe the effect is to use as sources charged particles – electrons and ions – accelerated by electric or magnetic field because characteristic particles accelerations in powerful accelerators have the value of that order. Short laser pulses when scattered on accelerated particles further must transform according to Ritz effect into pulses with duration and carrier frequency changed proportionally to the distance covered by the light. We put forward criteria for testing Ritz effect – the dependence of value of acceleration, distance, observation angle on the degree of transformation of carrier frequency and the power of laser pulses. Another possibility for testing Ritz effect is impact of laser emission on atoms and nano-particles of metals. In this case laser emission would accelerate the particles by light pressure and simultaneously would be scattered by these particles, further transforming according to Ritz effect. On the one hand, this would allow to observe smooth transformation of wavelength proportional to the distance covered by light. On the other hand, oscillations of light pressure and accelerations of particles at doubled frequency of oscillations of light field would, according to Ritz effect, result in generation of odd harmonics of the main frequency. Due to the fact that such an effect is really observed, studying of dependence of numbers and intensity of harmonics on light pressure and distance would allow to ascertain if their generation is partially caused by Ritz effect or not. The proposed schemes for devices and criteria will allow to check ballistic theory and Ritz effect and in the case of their confirmation to create simple and effective transformers of laser optical emission frequency into other frequency ranges.
References:

  1. Kryukov P. G. Femtosekundnye impul'sy. M.: Fizmatlit. 2008.
  2. Ritz, W., Recherches critiques sur l'Yelectrodynamique Generale // Ann. chim. et phys. 1908. V. 13. P. 145–275.
  3. Frankfurt U. I., Frenk A. M. Optika dvizhushchikhsya tel. M.: Nauka. 1972. S. 113.
  4. Rouzver N. T. Perigeliy Merkuriya ot Lever'e do Eynshteyna. M.: Mir. 1985. S. 161.
  5. Tomson Dzh.Dzh. Elektrichestvo i materiya. M.–L.: OGIZ. 1928.
  6. Akhmanov S. A., Nikitin S. Yu. Fizicheskaya optika. M.: MGU, 2004.
  7. Yel'yashevich M. A., Kembrovskaya N. G., Tomil'chik L. M. Val'ter Ritts kak fizik-teoretik i ego issledovaniya po teorii atomnykh spektrov // UFN. 1995. T. 165. S. 457–480.
  8. Sekerin V. I. Teoriya otnositel'nosti – mistifikatsiya veka. Novosibirsk. 1991.
  9. Semikov S. A. Variatsii skorosti sveta kak vozmozhnyy istochnik oshibok kosmicheskoy navigatsii, radiolokatsii i lazernoy lokatsii // Zhurnal radioelektroniki. 2013. № 12. S. 1–32. URL: http://jre.cplire.ru/jre/dec13/17/text.html (data obrashcheniya 27.01.2014).
  10. Aleksandrov Ye. B. Teoriya otnositel'nosti: pryamoy eksperiment s krivym puchkom // Khimiya i zhizn'. 2012. № 3. S. 16–20.
  11. Fox J. G. Evidence against emission theories // Am. J. Phys. 1965. V. 33. P. 1–17.
  12. Semikov S. A. Ob eksperimental'noy proverke ballisticheskoy teorii sveta // Vestnik NNGU. 2013. № 4. S. 56–63.
  13. Baranov A. G. O nekotorykh eksperimentakh po proverke postulatov spetsial'noy teorii otnositel'nosti // Eynshteynovskiy sbornik–66. M.: Nauka. 1966. S. 284.
  14. Kantor W. Speed of gamma rays emitted by high speed particles // Spectr. Lett. 1971. V. 4. P. 245–253.
  15. Lo Savio M. Criticism of the sadeh experimental evidence for the second postulate of special relativity // Phys. Lett. A. 1988. V. 133. P. 176–178.
  16. Semikov S. A. Preobrazovanie elektromagnitnykh voln v pole uskoreniy // Trudy XIV-y nauchnoy konferentsii po radiofizike. 7 maya 2010 g. / pod red. A. V. Yakimova, S. M. Gracha. N. Novgorod: NNGU. 2010. S. 188–190.
  17. Semikov S. A. Generatsiya vysokikh garmonik pri modulyatsii skorosti istochnika // Trudy XVII-y nauchnoy konferentsii po radiofizike. 13–17 maya 2013 g. / pod red. A. V. Yakimova, S.M. Gracha. N. Novgorod: NNGU. 2013. S. 153–155.
  18. Semikov S. A. Klyuch k zagadkam Kosmosa // Inzhener. 2006. № 3. S. 8–11.
  19. Semikov S. A. Kosmos russkogo Aristarkha // Istoriya nauki i tekhniki. 2007. № 1. S. 60–64.
  20. Comstock D. F. A Neglected Type of Relativity // Phys. Rev. 1910. V. 30. P. 267.
  21. Guthnick P. Astronomische Kriterien für die Unabhängigkeit der Fortpflanzungsgeschwindigkeit des Lichtes von der Bewegung der Lichtquelle // Astr. Nachr. 1913. Bd. 195. S. 265–270.
  22. Freundlich E. Zur Frage der Konstanz der Lichtgeschwindigkeit // Phys. Z. 1913. Bd. 14. S. 835–838.
  23. Betten A. Dvoynye i kratnye zvezdy. M.: Mir. 1976.
  24. La Rosa M. Addiert sich die Geschwindigkeit des Lichtes zu derjenigen der Lichtquelle? Dafür sprechende Beweise aus den Phänomenen der «veränderlichen Sterne» // Phys. Z. 1924. Bd. 21. S. 333–347.
  25. Zurhellen W. Zur Frage der Astronomischen Kriterien fur die Konstanz der Lichtgeschwindigkeit // Astr. Nachr. 1914. Bd. 198. S. 1–10.
  26. Moon P., Spencer D. Binary Stars and the Velocity of Light // JOSA. 1953. V. 43. № 8. P. 635–641.
  27. De Sitter W. Ein astronomischer Beweis für die Konstanz der Lichtgeschwindigkeit // Phys. Z. 1913. Bd. 14. S. 429, 1267.
  28. Arras P., Burkart J., Quataert E., Weinberg N. The Radial Velocity Signature of Tides Raised in Stars Hosting Exoplanets // MNRAS. 2012. V. 422. Is. 2. P. 1761–1766.
  29. Mushailov B. R., Teplitskaya V. S. Spektrometricheskiy metod obnaruzheniya ekzoplanet kak eshche odin test dlya proverki invariantnosti skorosti sveta // Vestnik MGU. Seriya 3. 2011. № 6. S. 98–103.
  30. Mushailov B. R., Teplitskaya V. S. O nadezhnosti opredeleniya orbital'nykh parametrov ekzoplanet doplerovskim metodom // Kosmicheskie issledovaniya. 2012. T. 50. № 6. S. 452–461.
  31. Semikov S. A. Ekzoplanetnaya ekzotika: illyuzii i real'nost' // Tekhnika – molodezhi. 2013. № 1. S. 24–26.
  32. Rodigas T. J., Hinz, P. M. Which Radial Velocity Exoplanets Have Undetected Outer Companions? // Astrophysical Journal. 2009. V. 702. P. 716–723.
  33. Sciama D. W. Modern Cosmology and the Dark Matter Problem. Cambridge: Cambridge University Press. 1995. P. 101.
  34. Combes F. Distribution of CO in the Milky Way // Annu. Rev. Astron. Astrophys. 1991. V. 29. P. 195–237.
  35. Eygenson M. S. Vnegalakticheskaya astronomiya. M.: Fizmatgiz. 1960.
  36. Belopol'skiy A. A. Astronomicheskie trudy. M.: Gostekhizdat. 1954.
  37. Zwicky F. On the Red Shift of Spectral Lines Through Interstellar Space // Proc. National Acad. Sci. 1929. V. 15. № 10. P. 773–779.
  38. Tsiolkovskiy K. E. Ocherki o Vselennoy. Kaluga. 2001.
  39. Vavilov S. I. Sobranie sochineniy, T. 2. M.: AN SSSR, 1952.
  40. Dzhouns D. Izobreteniya Dedala. M.: Mir. 1985. S. 150.
  41. Eygenson M. S. Vnegalakticheskaya astronomiya. M.: Fizmatgiz. 1960.
  42. Devasia S. A Relative-velocity-based Cosmology Model. URL: http://faculty.washington.edu/devasia/Physics/Devasia_cosmology.pdf (data obrashcheniya 27.01.2014).
  43. Tropnikov A. N. Smeshchenie Doplera v gravitatsionnom pole. URL: http://www.astrolab.ru/cgi-bin/manager.cgi?id=40&num=1374 (data obrashcheniya 27.01.2014).
  44. Cyrenika A. A. Principles of Emission Theory // Apeiron. 2000. V. 7. № 1-2. P. 89–106. URL: http://redshift.vif.com/JournalFiles/Pre2001/V07NO1PDF/V07N1CYR.pdf (data obrashcheniya 27.01.2014).
  45. Múnera H. A. A Semiclassical Model of the Photon Based on Objective Reality and Containing Longitudinal Field Components // Advances in Chemical Physics, Part III (Modern Nonlinear Optics). V. 119. P. 335–385.
  46. Semikov S. A. Ballisticheskaya teoriya Rittsa i kartina mirozdaniya. N. Novgorod: Perspektiva. 2013.
  47. Dingle H. A Proposed Astronomical Test of the «Ballistic» Theory of Light Emission // MNRAS. 1959. V. 119. № 1. P. 67–71.
  48. Dickens R. J. Malin S. R. C. A Test of the Ritz Theory of Light Propagation // Observatory. 1965. V. 85. P. 260–262.
  49. Malykin G. B. Effekt San'yaka i ballisticheskaya gipoteza Rittsa // Optika i spektrosk. 2010. T. 109. № 6. S. 1018–1034.
  50. Mel'nikov O. A., Popov V. S. Nedoplerovskie ob''yasneniya krasnogo smeshcheniya v spektrakh dalekikh galaktik // Nekotorye voprosy fiziki kosmosa. Sbornik 2. M.: VAGO AN SSSR. 1974. S. 9.
  51. Perlmutter S., et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae // Astroph. J. 1999. V. 517. P. 565–586.
  52. Mesyats G. A., Yalandin M. I. Pikosekundnaya elektronika bol'shikh moshchnostey // UFN. 2005. T. 175. S. 225–245.
  53. Banwell S. I., Farr S. S. Further Investigation of the Velocity of Propagation of Light in vacuo in a Transverse Magnetic Field // Proc. Roy. Soc. 1940. V. A175. P. 1–25.
  54. Bonch-Bruevich A. M. Sergey Ivanovich Vavilov v moey zhizni // UFN. 2001. T. 171. S. 1087–1090.
  55. Bonch-Bruevich A. M., Molchanov V. A. Novyy opticheskiy relyativistskiy opyt // Optika i spektroskopiya. 1956. T. 1. № 2. S. 113–124.
  56. Kiefer D., Yeung M., et al. Light Bursts out of a Flying Mirror // Nature Communications, 23 April 2013. URL: http://www.mpq.mpg.de/cms/mpq/en/news/press/pdf/2013/PR_13_04_23.pdf (data obrashcheniya 27.01.2014).
  57. Ganeev R. A. Generatsiya vysshikh garmonik izlucheniya moshchnykh lazerov v plazme, obrazovannoy pri vozdeystvii predympul'sa na poverkhnost' tverdotel'nykh misheney // UFN. 2009. T. 179. №1. S. 65–90.
  58. Seleznyev V. P. Rasshiryaetsya li Vselennaya? // Aviatsiya i Kosmonavtika. 1963. №7. S. 16–19.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio