Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Medicative and preventive action of bienzyme superoxide dismutase  chondroitin sulphate – catalase conjugate at endotoxic shock


A.V. Maksimenko – Dr. Sc. (Biol.), Professor, Head of Biochemical Engineering Laboratory, Institute of Experimental Cardiology, Russian Cardiology Research-and-Production Complex, Moscow, Russia. E-mail:
A.V. Vavaeva – Junior Research Scientist of Biochemical Engineering Laboratory, Institute of Experimental Cardiology, Russian Cardiology Research-and-Production Complex, Moscow, Russia. E-mail:
A.A. Abramov – Junior Research Scientist of Experimental Myocardial Pathology Laboratory, Institute of Experimental Cardiology, Russian Cardiology Research-and-Production Complex, Moscow, Russia. E-mail:
A.V. Vavaev – Ph.D. (Biol.), Research Scientist of Biochemical Engineering Laboratory, Institute of Experimental Cardiology, Russian Cardiology Research-and-Production Complex, Moscow, Russia. E-mail address:
V.L. Lakomkin – Ph.D. (Med.), Leading Research Scientist of Experimental Myocardial Pathology Laboratory, Institute of Experimental Cardiology, Russian Cardiology Research-and-Production Complex, Moscow, Russia. E-mail:

The effects of bienzyme superoxide dismutase – chondroitin sulphate – catalase (SOD-CHS-CAT) conjugate were studied after preventive and medicative intravenous (i.v.) administration in rats with endotoxemia (due to lypopolysaccharide i.v. bolus administration). The increase of heart rate in experimental groups of rates (with SOD-CHS-CAT conjugate) became the compensatory reaction against blood pressure decrease. The SOD-CHS-CAT conjugate was active during cytokine phase of endotoxin injury and distant damage stages. The preventive and medicative action of SOD-CHS-CAT conjugate produces similar survival results (significantly 1.4 higher as compared to control) emphasizing the possibility of its therapeutic application.


  1. Cuzzocrea S., Mazzon E., Di Paola R., Esposito E., Macarthur H., Matuschak M., Salvemini D. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock // J. Pharmacol. Experim. Ther. 2006. V. 319. P. 73-81.
  2. Tiruppathi C., Shimizu J., Miyawaki-Shimizu K., Vogel S.M., Bair A.M., Minshell R.D., Predesen D., Malik A.B. Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide // J. Biol. Chem. 2008. V. 283. № 7. P. 4210–4218.
  3. Netea M.G., Fantuzzi G., Kullberg B.J., Stuyt R.J.L., Pulido E.J., McIntyre R.C. Jr., Joosten L.A.B., Van der Meer J.W.M., Dinarello C.A. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia // J. Immunol. 2000. V. 164. P. 2644-2649.
  4. Sakao Y., Takeda K., Tsutsui H., Kaisho T., Nomura F., Okamura H., NakanishiK., Akira S. IL-18 – deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock // Int. Immunol. 1999. V. 11. P. 471-480.
  5. Van Denren M., Dofferhoff A.S.M., Van der Meer J.W.M. Cytokines and the response to infections // J. Pathol. 1992. V. 168. P. 349-356.
  6. Gandhirajan R.K., Meng S., Chandramoorthy H.C., Mallilankaraman K., Mancarella S., Gao H., Razmpour R., Yang X-F., Houser S.R., Chen J., Koch W.J., Wang H., Soboloff J., Gill D.L., Madesh M. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation // J. Clin. Invest. 2013. V. 123. № 2. P. 887–902.
  7. Kowaltowski A.J., Vercesi A.E. Mitochondrial damage induced by conditions of oxidative stress // Free Radic. Biol. Med. 1999. V. 26. № 3-4. P. 463-471.
  8. Lloyd S., Chang A., Taylor F., Janzen E., McCay P. Free radical and septic shock in primates: the role of tumor necrosis factor // Free Radic. Biol. Med. 1993. V. 14. P. 233-242.
  9. Kratzer E., Tian Y., Sarich N., Wu T., Meliton A., Leff A., Birukova A.A. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization // Am. J. Respir. Cell. Mol. Biol. 2012. V. 47. № 5. P. 688-697.
  10. Ashtiani H.R.A., Khoyi S.H., Rahbar M., Hedayati M., Hossein Rastegar H., Malekpour A. Effect of lipopolysaccharide (LPS) extracted from Salmonella enteritidis on production of hydrogen peroxide and total antioxidant capacity in fibroblast cells // Ann. Biol. Res. 2013. V. 4. № 1. P. 1-6.
  11. Moreira da Silva F., Marques A., Chaveiro A. Reactive oxygen species: a double-edged sword in reproduction // The Open Veterinary Science Journal. 2010. V. 4. P. 127-133.
  12. Lopes S., Jurisicova A., Sun J.G., Casper R.F. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa // Hum. Reprod. 1998. V. 13. № 4. P. 896-900.
  13. Czermak B.J., Breckwoldt M., Ravage Z.B., Huber-Lang M., Schal H., Bless N.M., Friedl H.P., Ward P.A. Mechanisms of enhanced lung injury during sepsis // Am. J. Pathol. 1999. V. 154. № 4. P. 1057–1065.
  14. Matthay M.A., Folkesson H.G., Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema // Physiol. Rev. 2002. V. 82. № 3. P. 569–600.
  15. Abraham E., Singer M. Mechanisms of sepsis-induced organ dysfunction // Crit. Care Med. 2007. V. 35. P. 2408–2416.
  16. Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care // Crit. Care Med. 2001. V. 29. № 7. P. 1303–1310.
  17. Martin G.S., Mannino D.M., Eaton S., Moss M. The epidemiology of sepsis in the UnitedStates from 1979 through 2000 // New Engl. J. Med. 2003. V. 348. № 16. P. 1546–1554.
  18. Russell J.A. Management of sepsis // New Engl. J. Med. 2006. V. 355. № 16. P.1699–1713.
  19. Hsu H-Y., Wen M-H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression // J. Biol. Chem. 2002. V. 277. № 25. P. 22131–22139.
  20. Bowler R.P., Arcaroli J., Crapo J.D., Ross A., Slot J.W., Abraham E. Extracellular superoxide dismutase attenuates lung injury after hemorrhage // Am. J. Respir. Crit. Care Med. 2001. V. 164. P. 290–294.
  21. Maksimenko A.V. Experimental antioxidant biotherapy for protection of the vascular wall by modified forms of superoxide dismutase and catalase // Curr. Pharm. Design. 2005. V. 11. № 16. P. 2007-2016.
  22. Maksimenko A.V., Vavaev A.V. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to oxidative stress // Heart International. 2012. V. 7. P. e3 (14-19) (
  23. Maksimenko A.V., Golubykh V.L., Tischenko E.G. The combination of modified antioxidant enzymes for anti-thrombotic protection of vascular wall: the significance of covalent connection of superoxide dismutase and catalase activities // J. Pharmacy Pharmacol. 2004. V. 56. P. 1463-1468.
  24. Maksimenko A.V., Tishhenko E.G. Modifikacziya katalazy' xondroitinsul'fatom // Bioximiya. 1997. T. 62. № 10. S. 1364-1368.
  25. Maksimenko A.V., Vavaev A.V., Buryachkovskaya L.I., Mox V.P., Uchitel' I.A., Lakomkin V.P., Kapel'ko V.I. Tishhenko E.G. Biofarmakologiya fermentny'x kon''yugatov: vazoprotektornaya aktivnost' supramolekulyarnogo kon''yugata superoksiddismutaza-xondroitinsul'fat-katalaza // Acta Naturae. 2010. T. 2. № 4. S. 90-103.
  26. Kustanova G.A., Murashev A.N., Karpov V.L., Margulis B.A., Guzhova I.V., Prokopenko I.R., Grachev S.V., Evgen’ev M.B. Exogenous heart shock protein 70 mediates sepsis manifestation and decreases the mortality rate in rats // Cell Stress & Chaperones. 2006. V. 11. № 2. P. 276-286.
  27. Yilmas M.S., Millington W.R., Feleder C. The preoptic anterior hypothalamic area mediates initiation of the hypotensive response induced by LPS in male rats // Shock. 2008. V. 29. № 2. P. 232-237.
  28. Vavaev A.V., Tishhenko E.G., Mox V.P., Maksimenko A.V. Vliyanie perekisi vodoroda na tonus arterial'nogo fragmenta sosuda kry'sy' i ego antioksidantnaya zashhita proizvodny'mi katalazy' i superoksiddismutazy' // Texnologii zhivy'x sistem. 2009. T. 6. № 3. S. 26-32.
  29. Miroshnitchenko O., Prokopenko O., Palnitkar U., Kister I., Powell W.S., Inouye M. Endotoxemia in transgenic mice overexpressing human gkutathi­one peroxidases // Circ. Res. 2000. V. 87. P. 289-295.
  30. Reddy A.T., Lakshmi S.P., Kleihenz J.M., Sutliff R.L., Hart C.M., Reddy R.C. Endothelial cell peroxisome proliferators-activated receptory reduces endotoxe­xemic pulmonary inflammation and injury // J. Immunol. 2012. V. 189. №  11. P. 5411-5420.
  31. Menden H., Tate E., Hogg N., Sampath V. LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2 – dependent IKK-β phosphorylation // Am. J. Physiol. Lung Cell. Mol. Physiol. 2013. V. 304. № 6. P. 445-455.
  32. Maksimenko A.V. Vnekletochnoe oksidativnoe porazhenie sosudistoj stenki i ee fermentativnaya antioksidantnaya zashhita // Xim.-farm. zhurn. 2007. T. 41. № 5. S. 3-12.
  33. Aird W.C. Endothelium as a therapeutic target in sepsis // Curr. Drug Targets. 2007. V. 8. № 4. P. 501-507.


May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio