Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Neural network modeling in ecology

Keywords:

A.G. Romanova – Engineer, Project department of construction company «Evrodorstroy». E-mail: romalenka@mail.ru
D.A. Tarkhov – Dr.Sc. (Eng.), Professor, Department of Mathematics, St.-Petersburg State Polytechnic University. E-mail: dtarkhov@gmail.com
T.A. Shemyakina – Associate Professor, Department of Mathematics, St.-Petersburg State Polytechnic University. E-mail: st_tat@mail.ru


The article substantiates the need for hierarchical systems of environmental monitoring and forecasting, and also proposed neural network approach to their construction. The main advantage of this approach is the ability to efficiently utilize the processing power, working with neural network models instead of large amounts of data. This article presents two practical examples of the application of neural network approach. The first example is connected with the restoration of the initial distribution of contamination on the final distribution, the second - to identify the source of contamination at the border for measurements inside the area. These three problems are incorrect and complex, it is difficult to solve them using traditional methods. The third task shows the advantage of sending neural network model changing of wind speed over the traditional interval information in the spread of clouds of pollution.
References:

  1. Vasil'ev A.N., Idrisova D.I., Romanova A.G., Tarxov D.A. Primenenie parametricheskix nejrosetevy'x modelej k postroeniyu sistemy' monitoringa zagryaznenij atmosfery' promy'shlenny'mi vy'brosami i uslovij truda v stroitel'stve. Materialy' IX Mezhdunar. konf. po neravnovesny'm proczessam v soplax i struyax (NPNJ'2012). Alushta. M.: MAI-PRINT. 2012. S. 468–470.
  2. Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhayushhej sredy'. M.: Nauka. 1982. 320 s.
  3. Vasil'ev A.N., Tarxov D.A. Nejrosetevoe modelirovanie. Princzipy'. Algoritmy'. Prilozheniya. SPb.: Izd-vo SPbGPU. 2009. 528 s.
  4. Tarxov D.A., Vasil'ev A.N., Idrisova D.I. Nejrosetevoe  modelirovanie sistemy' monitoringa zagryaznenij atmosfery' i obespechenie bezopasny'x uslovij truda v stroitel'stve // Nauchno-texn. vedomosti SPbGPU. Nauka i obrazovanie. 2012. № 2 1(147). S. 266-272.
  5. Tarxov D.A., Vasil'ev A.N., Tarabanov V.N., Idrisova D.I.  Primenenie nejrosetevogo modelirovaniya dlya resheniya zadach obespecheniya bezopasnosti truda na stroitel'ny'x mashinax pri rabote v usloviyax vechnoj merzloty'// Nauchno-texnicheskie vedomosti SPbGPU. Nauka i obrazovanie. 2012. № 2 1(147). S. 272-278.
  6. Alekseenko S.N., Shemyakina T.A., Chezganov V.S.  Lokal'noe sushhestvovanie ogranichennogo resheniya sistemy' Franklya v e'llipticheskom sluchae // Issled. po integro-dif. uravneniyam. Bishkek: Ilim. 2006. Vy'p. 35. S. 148–152.
  7. Alekseenko S.N., Shemyakina T.A.  Postroenie rasshirennoj xarakteristicheskoj sistemy' uravnenij dlya chastnogo sluchaya sistemy' Franklya e'llipticheskogo tipa  // Nauchno-texn. vedomosti SPbGPU. Fiz.-mat. nauki. 2009. № 3 (83). S. 73–82.
  8. Shemyakina T.A.  Primery' resheniya zadachi Koshi dlya nekotory'x variantov sistemy' Franklya e'llipticheskogo tipa // Nauchno-texn. vedomosti SPbGPU. Fiz.-mat. nauki. 2011. № 4 (134). S. 191–197.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio