Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Investigations of oxidation of polyacrylonitrile under IR-heating

Keywords:

Nguyen Hong Viet – Post-graduate Student, NUST «MISIS». E-mail: nhviet1980@gmail.com
S.M. Zorin – Post-graduate Student, NUST «MISIS». E-mail: htnru7@yandex
V.V. Kozlov – Dr.Sc. (Eng.), Associate Professor, NUST «MISIS». E-mail: kozlov@ips.ac.ru
Nguyen QuangThuong – Dr.Sc. (Eng.), Senior Researcher, CCAS. E-mail: tikhonmos@yahoo.com


A new method of carbonizing polyacrylonitrile using infrared heating results in the formation of new carbon forms which possess promising chemical and physical properties for using in electronic devices. The purpose of this work is to study the effect of oxygen on the chemical structure of the carbon material which obtained basing onpolyacrylonitrile under IR-heating on the automated installation IR heating QHC-P610CP. When IR -heatingin thepolyacrylonitrile occur physical and chemical tranformations to form the carbon material which contain carbon, nitrogen and hydrogen. Then system the carbon is formed basing onpolyconjugatedpolyacrylonitrilematerial. In the step of drying and prebaking may be possible oxidation of polyacrylonitrile . Formation of functional groups containing oxygen, confirmed by IR spectrum , which contain the bands of stretching vibrations  = 1725, 1790, 1680 cm1, corresponding to functional groups of the ester and amide , respectively. Semiempiricalscheme (MNDO) used to calculate the molecular structure of carbon material using a software package GAUSSIAN 03. For quantum chemical calculations chosen structure C46N14H10, C45N14OH12, C44N14O2H14, C43N14O3H16, C41N14O4H18, and calculated values of the binding energy (Eb), equal to 7.40, 7.11, 6.95, 6.61, 6.39 eV , respectively. Increasing the number of oxygen atoms in the PA to 4 carbon atoms reduces Ecv from 7.40 to 6.39 eV, respectively. Quantum chemical calculations were confirmed by analysis of the chemical composition of the surface of polyacrylonitrile after IR heating at 600 °C (X-ray photoelectron spectrometer PHI 5500 ESCA, firm Physical Electronics). Composition surface polyacrylonitrile equal C0,79N0,18O0,03, shows an increase in carbon content in the carbon material as compared with the starting polymer in the presence of residual oxygen content. Thus, as a result of transformation with a polyacrylonitrile IR heating polyacrylonitrile in the structure after IR heating at 2000C established by IR spectroscopy ester functional groups and amide ( = 1725, 1790, 1680 cm1) which contain oxygen. Calculations show that the increasing amount of carbon material atoms kislorodav to 2 atoms Ecv reduces from 7.40 to 6.97 eV, respectively. Results were confirmed by Auger spectroscopy and surface composition.
References:

  1. Kozhitov L.V., Kosushkin V.G., Krapuxin V.V., Parxomenko Ju.N. Texnologiya materialov mikro- i nanoe'lektroniki. M.: MISiS. 2007. 544 s.
  2. Kozhitov L.V., Kostikova A.V., Kozlov V.V. Perspektivny'e metallouglerodny'e nanokompozity' i uglerodny'j nanokristallicheskij material, poluchenny'j pri IK-nagreve polimerov // Materialy' XI mezhdunar. nauch. konf. (g. Stavropol') Ser. «Ximiya tverdogo tela: nanomaterialy', nanotexnologii». Stavropol': FGBOU VPO SevKavGTU. 2012. S. 31-47.
  3. Kozlov V.V., Korolev Ju.M., Karpacheva G.P. Ctrukturny'e prevrashheniya kompozita na osnove poliakrilonitrila i fullerena S60 pod vozdejstviem IK-izlucheniya // Vy'sokomolekulyarny'e soedineniya. 1999. T. 41. № 5. S. 836.
  4. Kozlov V.V., Karpacheva G.P., Petrov V.S., Lazovskaya E.V., Pavlov S.A. O ximicheskix prevrashheniyax poliakrilonitrila pri termicheskoj obrabotke v vakuume i atmosfere ammiaka // Izv. vuzov. Ser. Materialy' e'lektronnoj texniki. 2004. №4. C. 45.
  5. Kozlov V.V., Korolev Ju.M., Karpacheva G.P. Ctrukturny'e prevrashheniya kompozita na osnove poliakrilonitrila i fullerena S60 pod vozdejstviem IK-izlucheniya // Vy'sokomolekulyarny'e soedineniya. 1999. T. 41. № 5. S. 836.
  6. Kozhitov L.V., Kozlov V.V., Kostikova A.V. Novy'e metallouglerodny'e nanokompozity' i uglerodny'j nanokristallicheskij material s perspektivny'mi svojstvami dlya razvitiya e'lektroniki // Izv. vuzov. Ser. Materialy' e'lektronnoj texniki. 2012. № 3. S. 60-68.
  7. Kozlov V.V., Kozhitov L.V., Krapuxin V.V., Zaporoczkova I.V., Davletova O.A., Muratov D.G. Protonnaya provodimost' uglerodny'x nanostruktur na osnove pirolizovannogo poliakrilonitrila i ee prakticheskoe primenenie // Izv. vuzov. Ser. Materialy' e'lektronnoj texniki. 2008. № 1. C. 59-64.
  8. Litinskij A.O., Lebedev N.G., Zaporoczkova I.V. Model' IV-KCK v MNDO-raschetax mezh-molekulyarny'x vzaimo-dejstvij v geterogenny'x sistemax // Zhurnal fizicheskoj ximii. 1995. T. 69. № 1. S. 215.
  9. Dewar M.J.S., Thiel W. The MNDO method. Approximation and parameter // J. Amer. Chem. Soc. 1977. V. 99. P. 4899.
  10. Sun S., Zeng H., Am J. Size-Controlled Synthesis of Magnetite Nanoparticles // Chem. Soc. 2002. № 124. C. 124-128.
  11. Keiji Kinoshita ToruSaito, AkiraIto, Takashi Kawakami, Yasutaka Kitagawa, Shusuke Yamanaka, Kizashi Yamaguchi, Mitsutaka Okumura Theoreticalstudyonsingletoxygenadsorptionontosurface of graphene-like aromatic hydrocarbon molecules // Polyhedron. 2011. V. 30. C. 3249–3255.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio