Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Local application of bisphosphonates in metalloosteosynthesis. A brief literature review


M.V. Lekishvili – Dr.Sc.(Med.), Central Institute of Traumatology and Orthopaedics (Moscow)
Y. D. Sklyanchuk – Dr.Sc.(Med.), Professor, Moscow State Medical Stomatological University
A.Yu. Ryabov – Ph.D.(Med.), «Interdentos» (Korolev)
Yu. B. Yurasova – Dr.Sc.(Med.), Russian Children's Clinical Hospital (Moscow)
A.A. Ochkurenco – Dr.Sc.(Med.), Central Institute of Traumatology and Orthopaedics (Moscow)

Modern use of metal osteosynthesis in traumatology and orthopedics, as well as in oral and maxillofacial surgery, along with the good results of treatment raises a number of related complications and conditions that largely negate the results of the surgery. One of the main causes of long-term complications in these situations is the reaction of the bone tissue of the recipient on an implantable metal structure. However, impaired bone remodeling around implants (plates, spokes, rods implants, endoprosthesis etc.) used in the surgical treatment of complications of osteoporosis (OP) leads to a decrease in their stability and fixation (nonunion fractures, prosthesis loosening) and, as a consequence – slow rehabilitation of patients with the need of repeated traumatic operations. Based on the foregoing, there is a problem of stability of large joints endoprosthesis for a long time in traumatology and orthopedics adulthood, particularly in the field of hip joint (the most frequent manipulation reconstructive surgery). Osteoporosis is an additional risk factor, accelerating bone loss, which occurs in up to 50% of patients requiring hip replacement of large joints. Information on the mechanisms of bone loss adjacent to the endoprosthesis, give reason to believe that the intensity of osteolysis reduction, remodeling disorders, entailing the development of aseptic loosening could be corrected with the help of pharmaceuticals. In this regard, artificial synthetic compound belonging to the class of bisphosphonate (BP), known as inhibitors of bone resorption represent certain interest. In pharmacology BP are classes of drugs that prevent the loss of bone mass and is used to treat osteoporosis and similar diseases.


  1. Abtahi J., Agholme F., Sandberg O., Aspenberg P. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw // J. Dental Research. 2013. V.92. №3. P. 279-283.
  2. Aspenberg P., Astrand J. Bone allografts pretreated with a bisphosphonate are not resorbed// Acta Orthop Scand. 2002. V.73. №1. P. 20-23.
  3. Aspenberg P. Bisphosphonates and implants // Acta Orthop. 2009. V.80. №1. P. 119-123.
  4. Astrand J., Aspenberg P. Alendronate did not inhibit instability-induced bone resorption. A study in rats // Acta Orthop Scand. 1999. V.70. №1. P. 67-70.
  5. Astrand J., Aspenberg P. Topical, single dose bisphosphonate treatment reduced bone resorption in a rat model for prosthetic loosening // J. Orthop Res. 2004. V.22. №2. P. 244-249.
  6. Åberg J., Brohede U., Mihranyan A. et al. Targeted local delivery of bisphosphonate from orthopaedic implants // Key Engineering Materials (Ed. M. Prado and C. Zavaglia). 2008. Bioceramics 21. P. 543-546.
  7. Åberg J., Brohede U., Mihranyan A. et al. Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations // J. Mater. Sci Mater Med. 2009. V. 20. № 10. P. 2053-2061.
  8. Agholme F., Aspenberg P. Experimental results of combining bisphosphonates with allograft in a rat model // J. Bone Jt. Surg. (Br). 2009. V.91. № 5. P. 670-675.
  9. Back D.A., Pauly S., Romme L. et al. Effect of local zoledronate on implant osseointegration in a rat model // BMC Musculoskeletal Disorders. 2012. P. 13-42.
  10. Bauer T.W., Smith S.T. Bioactive materials in orthopaedic surgery: overview and regulatory considerations // Clin. Orthop. 2002. № 395. P. 11-22.
  11. Bhandari M., Bajammal S., Guyatt G.H. et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis // J. Bone Jt. Surg. (Am). 2005. V.87. № 2. P. 293-301.
  12. Bobyn J.D., Hacking S.A., Krygier J.J. et al. Zoledronic acid causes enhancement of bone growth into porous implants // J. Bone Jt. Surg. (Br). 2005. V.87. № 3. P.416-420.
  13. Bosemark P., Isaksson H., McDonald M.M. et al. Augmentation of autologous bone graft by a combination of bone morphogenic protein and bisphosphonate increased both callus volume and strength // Acta Orthop. 2013. V. 84. № 1. P. 106-111.
  14. Chacon G.E., Stine E.A., Larsen P.E. et al. Effect of alendronate on endosseous implant integration: an in vivo study in rabbits // J. Oral Maxillofac Surg. 2006. V.64. № 7. P. 1005-1009.
  15. Ding M., Day J.S., Burr D.B. et al. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates // Calcified Tissue Int. 2003. V.72. № 6. P. 737-744.
  16. DiResta G.R., Manoso M.W., Naqvi A. et al. Bisphosphonate delivery to tubular bone allografts // Clin. Orthop. 2008. № 466. P. 1871-1879.
  17. Faucheux C., Verron E., Soueidan A. et al. Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro // J. Biomed Mater. Res. 2009. V.89A. № 1. P. 46-56.
  18. Fleisch H. Bisphosphonates in bone disease // International publishers in Medicine, Science&Technology, New York. 1997. 173 p.
  19. Frenkel S.R., Jaffe W.L., Valle C.D. et al. The effect of alendronate (Fosamax) and implant surface on bone integration and remodeling in a canine model // J. Biomed. Mater. Res. 2001. V.58. № 6. P. 645-650.
  20. Gangoiti M.V., Cortizo A.M., Arnol V. et al. Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells // Eur. J. Pharmacol. 2008. V.600. № 1-3. P. 140-147.
  21. Gao Y., Zou S., Liu X. et al. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats // Biomaterials. 2009. V.30. № 9. P. 1790-1796.
  22. Garbuz D.S., Hu Y., Kim W.Y. et al. Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum // J. Bone Jt. Surg. (Am). 2008. V.90. № 5. P. 1090-1100.
  23. Greiner S.H., Kadow-Romacker A., Lubberstedt M. et al. The effect of zoledronic acid incorporated in a poly(D,L-lactide) implant coating on osteoblasts in vitro // J. Biomed. Mater. Res. 2006. V.80A. № 4. P. 769-775.
  24. Greiner S.H., Kadow-Romacker A., Wildemann B. et al. Bisphosphonates incorporated in a poly(D,L-lactide) implant coating inhibit osteoblast like cells in vitro // J. Biomed. Mater. Res. 2007. V.83A. № 4. P. 1184-1191.
  25. Greiner S.H., Wildemann B., Back D.A. et al. Local application of zoledronic acid incorporated in a poly(D,L-lactide) coated implant accelerates fracture healing in rats // Acta Orthop. 2008. V.79. № 5. P. 717-725.
  26. Harding A.K., Aspenberg P., Kataoka M. et al. Manipulating the anabolic and catabolic response in bone graft remodeling: synergism by a combination of local BMP-7 and a single systemic dosis of zoledronate // J. Orthop Res. 2008. V.26. № 9. P. 1245-1249.
  27. Hilding M., Aspenberg P. Postoperative clodronate decrease prosthetic migration: 4-yer follow-up of a randomized radiostereometric study of 50 total knee patients // Acta Orthop. 2006. V.77. № 6. P. 912-916.
  28. Hilding M., Aspenberg P. Local peroperative treatment with a bisphosphonate improves the fixation of total knee prostheses: a randomized, double-blind radiostereometric study of 50 patients // Acta Orthop. 2007. V.78. № 6. P. 795-799.
  29. Hu J.H., Ding M., Søballe K. et al. Effects of short-term alendronate treatment on the three-dimensional microstructural, physical, and mechanical properties of dog trabecular bone // Bone. 2002. V.31. № 5. P. 591-597.
  30. Jakobsen T., Kold S., Bechtold J.E. et al. Effect of topical alendronate treatment on fixation of implants inserted with bone compaction // Clin. Orthop. 2006. № 444. P. 229-234.
  31. Jakobsen T., Baas J., Bechtold J.E. et al. Soaking morselized allograft in bisphosphonate can impair implant fixation // Clin. Orthop. 2007. № 463. P. 195-201.
  32. Jakobsen T., Kold S., Bechtold J.E. et al. Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study // J. Orthop. Res. 2007. V.25. № 4. P. 432-441.
  33. Jakobsen T., Baas J., Kold S. et al. Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction // J. Orthop. Res. 2009. V.27. № 2. P. 189-194.
  34. Jakobsen T., Baas J., Bechtold J.E. et al. The effect of soaking allograft in bisphosphonate // Clin. Orthop. 2010. № 468. P. 867-874.
  35. Jakobsen T., Baas J., Bechtold J.E. et al. The effect on implant fixation of soaking tricalcium phosphate granules in bisphosphonate // Open Orthop. J. 2012. V.6. P. 371-375.
  36. Jensen T.B., Bechtold J.E., Chen X., Søballe K. Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants // J. Orthop. Res. 2007. V.25. № 6. P. 772-778.
  37. Jeppsson C., Ǻstrand J., Tägil M., Aspenberg P. A combination of bisphosphonate and BMP additives in impacted bone allografts // Acta Orthop. Scand. 2003. V.74. № 4. P. 483-489.
  38. Kanis J.A., Adams J., Borgstrom F. et al. The cost-effectiveness of alendronate in the management of osteoporosis // Bone. 2008. V.42. № 1. P. 4-15.
  39. Matuszewski Ł., Turżańska K., Matuszewska A. et al. Effect of implanted bisphosphonate-enriched cement on the trabecular microarchitecture of bone in a rat model using micro-computed tomography // Int. Orthopaed (SICOT). 2013. V.37. P. 1187-1193.
  40. Meraw S.J., Reeve C.M., Wollan P.C. Use of alendronate in peri-implant defect regeneration // J. Periodontol. 1999. V.70. № 2. P. 151-158.
  41. McKenzie K., Dennis Bobyn J., Roberts J. et al. Bisphosphonate remains highly localized after elution from porous implants // Clin. Orthop. 2011. V.469. № 2. P. 514-522.
  42. Millett P.J., Allen M.J., Bostrom M.P. Effects of lendronate on particle-induced osteolysis in a rat model // J. Bone Jt. Surg. (Am). 2002. V.84. № 2. P. 236-249.
  43. Nakamura O., Kaji Y., Imaizumi Y. et al. Prefabrication of vascularized bone allograft in a recipient rat using a flow-through vascular pedicle, bone morphogenetic protein, and bisphosphonate // J. Reconstr. Microsurg. 2013. V.29. № 4. P. 241-248.
  44. Nishioka T., Yagi S., Mitsuhashi T. et al. Alendronate inhibits periprosthetic bone loss around uncemented femoral components // J. Bone Miner. Metab. 2007. V.25. № 3. P. 179-183.
  45. Ozturk A.M., Tabak A.Y., Aktekin C.N. et al. Alendronate enhances antibiotic-impregnated bone grafts in the treatment of osteomyelitis // Int. Orthopaed. 2008. V.32. № 6. P. 821-827.
  46. Peter B., Ramaniraka N., Rakotomanana L.R. et al. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis // Comput Methods Biomech. Biomed. Engin. 2004. V.7. № 2. P. 73-78.
  47. Russell R.G.G., Watts N.B., Ebetino F.H., Rogers M.J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy// Osteoporosis Int. 2008. V.19. № 6. P. 733-759.
  48. Shanbhag A.S. Use of bisphosphonates to improve the durability of total joint replacements// J. Am. Academy Orthop. Surg. 2006. V.14. № 4. P. 215-225.
  49. Stadelmann V.A., Terrier A., Gauthier O. et al. Prediction of bone density around orthopedic implants delivering bisphosphonate // J. Biomechanics. 2009. V.42. № 9. P. 1206-1211.
  50. Søballe K., Chen X., Jensen T.B. et al. Alendronate treatment in the revision setting, with and without controlled implant motion: an experimental study in dogs // Acta Orthop. 2007. V.78. № 6. P. 800-807.
  51. Tanzer M., Karabasz D., Krygier J.J. et al. Bone augmentation around and within porous implants by local bisphosphonate elution // Clin. Orthop. 2005. № 441. P. 30-39.
  52. von Knoch F., Eckhardt C., Alabre C.I. et al. Anabolic effects of bisphosphonates on peri-implant bone stock // Biomaterials. 2007. V.28. № 24. P. 3549-3559.
  53. Xue Q., Li H., Zou X. et al. Healing properties of allograft from alendronate-treated animal in lumbar spine interbody cage fusion // European Spine J. 2005. V.14. № 3. P. 222-226.


May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio