Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Miniaturization of antenna modules of satellite navigation system navigation equipment

Keywords:

S.N. Bojko – Ph.D. (Phys.-Math.), Director of Department, “ISDE” Co. Ltd. E-mail: npk6@mail.ru
S.V. Kosyakin – Ph.D. (Eng.), Head of Department, “ISDE” Co. Ltd.
A.S. Kukharenko – Ph.D. (Eng.), Senior Research Scientist, “ISDE” Co. Ltd.
Y.S. Yaskin – Ph.D. (Eng.), General Director, Chief Designer, “ISDE” Co. Ltd.


An original navigation antenna module (NAM) design method according to which a microstrip antenna element is the same time an antenna housing is described. According to this method an antenna element is made of a ceramic or keramoplast in the form of turned cup with a metalized inner hollow, in which all active elements are placed, covered with a conductive cover with a UHF connector. To protect the element from the external influence it is supplied with a protection coating. This method of module production was named as uncased. A comparative analysis of the ultimate ratios of small microstrip antenna characteristics, which are traditionally made and in the form of turned cup, is made. As a result of this analysis it is found that on an equal footing cup shaped microstrip antenna (MSA) has higher radiation efficiency and 1,5–2 times wider band width, comparing with the MSA with traditional (flat) form, and a ground plane size influence on these parameters is so low that NAM with cup shaped MSA can be used even without additional ground plane. An experimental data, which show that antenna modules, designed using uncased technology, have a wider radiation pattern and a wider (up to 1,5 times) radiation pattern angle range in which circle field polarization persists, are shown. The use of metamaterial in MSA topology helps to increase radiation pattern angle range in which circle field polarization persists up to 1400 with the same time radiation efficiency increasing. The found NAM with a cup shaped MSA advantages open additional opportunities for antenna module miniaturization.
References:

  1. Patent RF № 58798. Mikropoloskovaya antenna / Korolev Yu.N., Bojko S.N. Opubl. 27.11.2006. Byul. № 33.
  2. Best S.R., Hanna D.L. A performance Comparison of Fundamental Small-Antenna Designs // IEEE Antennas Propag. Mag. Feb. 2010. V. 52. № 1. P. 47–69.
  3. Bankov S.E., Davydov A.G., Papilov K.B. Malogabaritnye pechatnye antenny krugovoj polyarizacii // Zhurnal radioelektroniki. 2010. № 8. S. 1–27.
  4. Wheeler H.A. Fundamental limitations of small antennas // Proc. of the IRE. Dec. 1947. P. 1479–1488.
  5. Chu L.J. Physical limitations of omnidirectional antennas // Journal of Applied Physics. Dec. 1948. V. 19. P. 1163–1175.
  6. Collin R.E., Rothschild S. Evaluation of Antenna Q // IEEE Trans. Antennas Propag. Jan. 1964. V. 12. № 1. P. 23–27.
  7. Volakis J.L., Chen C.C., Fujimoto K. Small Antennas. Miniaturization & Applications. McGrow Hill. 2010.
  8. Sievenpiper D.F., Dawson D.F., Jacob M.M., Kanar T., Kim S., Long J., Quarfoth R.G. Experimental validation of performance limits and design guidelines for small antennas // IEEE Trans. Antennas Propag. Jan. 2012. V. 60. № 1. P. 8–19.
  9. Thal Y.L. Polarization, gain and Q for small antennas // IEEE Trans. Antennas Propag. Dec. 2011. V. 59. № 12. P. 4844–4848.
  10. Petrov A.S., Makeev V.V. Analiz kharakteristik mikropoloskovykh antenn v decimetrovom diapazone // Radiotekhnika i elektronika. 2013. T. 58. № 3. S. 213–224.
  11. Mattej D.L., Yang L., Dzhons E.M. Fil'try SVCh, soglasuyushhie cepi i cepi svyazi. M.: Svyaz'. 1970 (T. 1.). 1971 (T. 2).
  12. Hansen R.S. Electrically small, superdirective, and superconducting antennas. Hoboken, New Jersey: John Wiley & Sons, Inc. 2005.

May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio