Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

The correspondence between IR spectra of valence Si-H vibrations and structure of the (SiH)X groups, Х = 1 – 3, in the cages of microcrystalline hydrogenated silicon

Keywords:

А. V. Larin – Leading Research Scientist, Department of Chemistry, Lomonosov Moscow State University. E-mail: nasgo@yandex.ru, 916-486-4660
A. A. Rybakov – Junior Research Scientist, Department of Chemistry, Lomonosov Moscow State University. E-mail: rybakovy@gmail.com


On the basis of density functional theory (PBE/PAW) with periodic boundary conditions it was shown that the formation of the stable (SiH)Xgroups, Х = 1 – 3, in the cages of microcrystalline hydrogenated silicon (MHS) is the consequence of the MHS structure. New interpretation of the IR spectra of valence Si-H vibrations is suggested while the (SiH)X contribution was earlier neglected therein.
References:

  1. Vepřek S., Mareček V. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport // Solid. State. Electron. 1968. V. 11. № 7. P. 683–684.
  2. Despeisse M. et al. Research and developments in thin-film silicon photovoltaics // Proc. SPIE 7409, Thin Film Sol. Technol. / ed. A.E. Delahoy, L.A. Eldada. International Society for Optics and Photonics. 2009. P. 74090B–74090B–15.
  3. Ray S., Mukhopadhyay S. Structural characteristics of RF- and VHF-deposited nanocrystalline silicon films for solar cell application // Philos. Mag. 2009. V. 89. № 28–30. P. 2573–2585.
  4. Müllerová J. et al. Microstructure related optical characterization of technologically relevant hydrogenated silicon thin films // 16th Polish-Slovak-Czech Opt. Conf. Wave Quantum Asp. Contemp. Opt. / ed. A. Popiolek-Masajada, E. Jankowska, W. Urbanczyk. International Society for Optics and Photonics. 2008. P. 714103–714103–8.
  5. Shi T.S. et al. Models for the Hydrogen-Related Defect—Impurity Complexes and SiH Infrared Bands in Crystalline Silicon // Phys. status solidi (a). 1982. V. 74. № 1. P. 329–341.
  6. Cardona M. Vibrational Spectra of Hydrogen in Silicon and Germanium // Phys. status solidi (b). 1983. V. 118. № 2. P. 463–481.
  7. Lucovsky G., Nemanich R., Knights J. Structural interpretation of the vibrational spectra of a-Si: H alloys // Phys. Rev. B. 1979. V. 19. № 4. P. 2064–2073.
  8. Pfanner G. et al. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion // Phys. Rev. B. 2012. V. 85. № 19. P. 195202.
  9. Larin A.V. The Loewenstein rule: the increase in electron kinetic energy as the reason for instability of Al–O–Al linkage in aluminosilicate zeolites // Phys. Chem. Miner. 2013. V. 40. № 10. P. 771–780.
  10. Mahan A. et al. Characterization of microvoids in device-quality hydrogenated amorphous silicon by small-angle x-ray scattering and infrared measurements // Phys. Rev. B. 1989. V. 40. № 17. P. 12024–12027.
  11. Kresse G., Hafner J. (a) Ab initio molecular dynamics for liquid metals // Phys. Rev. B. 1993. V. 47. № 1. P. 558–561; Kresse G., Furthmüller J. (b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. № 16. P. 11169–11186.
  12. Johnson E.V., Kroely L., Roca i Cabarrocas P. Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics // Sol. Energy Mater. Sol. Cells. 2009. V. 93. № 10. P. 1904–1906.
  13. Kageyama S., Akagawa M., Fujiwara H. Dielectric function of a-Si:H based on local network structures // Phys. Rev. B. 2011. V. 83. № 19. P. 195205.
  14. Baum J. et al. Multiple-Quantum NMR Study of Clustering in Hydrogenated Amorphous Silicon // Phys. Rev. Lett., 1986. V. 56. № 13. P. 1377–1380.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio