Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Mesh devices of electromagnetic waves polarization: methods of analysis and manufacturing technologies

Keywords:

I.N. Kabanov


Polarization devices of different types are widely applied in telecommunication and radiolocation facilities of microwave and terahertz frequency ranges. One of the varieties of such devices is mesh polarizer intended for controlling of linearly polarized electromagnetic signals' parameters. To investigate the processes of transmission and dispersion of radio waves at one-dimensional periodical structures, which mesh polarizes belong to, different methods of mathematical modeling are used. A brief survey of these methods is presented here. As it is shown in the paper, a choice of the analysis method for such a device is defined in general by the design and technological features of its implementation. An additional important factor that is needed to be taken into account during the analysis and development of mesh polarizer is the exploitation conditions of such a device.
References:

  1. Pisano G., Savini G., Ade P.A., Haynes V.Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths // Applied Optics. 2008. V. 47. № 33. P. 6251–6256.
  2. Kuzneczov S.A., Arzhannikov A.V., Gel`fand A.V., Zorenko A.V., Gorshunov B.P. Mnogokanal`naya radiometricheskaya sistema dlya registraczii submillimetrovogo izlucheniya pri puchkovo-plazmennom vzaimodejstvii // Vestnik Novosibirskogo gosudarstvennogo universiteta. 2010. T. 5. Vy'p. 3. S. 5–19.
  3. Biber S., Hofmann A., Shulz R. et al. Design and measurement of a bandpass filter at 300 GHz based on a highly efficient binary grating // IEEE Transactions on Microwave Theory and Techniques. 2004. V. 52. P. 2183–2189.
  4. Bezborodov V.I., Kiselev V.K., Kuleshov E.M. , Janovskij M.S. Kvaziopticheskie polyarizaczionny'e attenyuatory' v teragerczovom diapazone chastot // Radiofizika i e`lektronika. 2007. T. 12. № 2. S. 451–455.
  5. Ustrojstva polyarizaczii radiovoln v teragerczevom diapazone chastot / Pod red. A.S. Jakunina – M.: Radiotexnika. 2012.
  6. Kreniczkij A.P., Alaverdyan S.A., Meshhanov V.P. Kvaziopticheskie i volnovodny'e komponenty' na osnove plenochny'x struktur dlya diapazona SVCh, KVCh i TGCh // Antenny'. 2012. № 3. S. 15–17.
  7. Alaverdyan S.A., Bokov S.I., Zajczev N.A., Isaev V.M., Kabanov I.N., Kreniczkij A.P., Meshhanov V.P. Setochny'e struktury' polyarizaczii e`lektromagnitny'x voln v teragerczovom diapazone chastot // E`lektromagnitny'e volny' i e`lektronny'e sistemy'. 2012. T. 17, № 12. S. 47–50.
  8. Shestopalov V.P., Litvinenko L.N., Masalov S.A., Sologub V.G. Difrakcziya voln na reshetkax. Xar`kov: Izd-vo Xar`kovskogo un-ta. 1973.
  9. Shestopalov V.P., Kirilenko A.A., Masalov S.A., Sirenko Ju.K. Rezonansnoe rasseyanie voln. Difrakczionny'e reshetki. Kiev: Naukova dumka. 1986.
  10. Fel`dshtejn A.L., Javich L.R., Smirnov V.P. Spravochnik po e`lementam volnovodnoj texniki. M.: Sov. radio. 1967.
  11. Khavashi A., Miri M., Mehrany K. Enhanced reflection in one-dimensional mostly-hollow metallic gratings at terahertz frequencies // IEEE Trans. Terahertz Science and Technology. 2011. V. 1. № 2. P. 435–440.
  12. Mal`czev V.P., Shatrov A.D.E`lektromagnitny'e svojstva reshetki iz anizotropno provodyashhix lent s bol`shim koe`fficzientom zapolneniya // Radiotexnika i e`lektronika. 2012. T. 57. № 10. S. 1099–1103.
  13. Medina F., Fernandez-Prieto A., Mesa F.Microstrip circuit analog to illustrate extraordinary transmission through compound diffraction gratings // Proc. of the 39th European Microwave Conf., 2009, Rome, Italy. P. 508–511.
  14. Rodriguez-Berral R., Medina F., Mesa F., Garcia-Vigueras M. Quasi-analytical modeling of transmission/reflection in strip/slit grating loaded with dielectric slabs // IEEE Trans. Microwave Theory and Techniques. 2012. V. 60. № 13. P. 405–418.
  15. Fan R.-H., Peng R.-W., Huang X.-R.et al. Transparent metals for ultra-broadband electromagnetic waves // Advanced Materials. 2012. V. 24. P. 1980–1986.
  16. Li D., Shu S., Li F., Ma G., Dai Y., Ma H. Anomalous transmission of terahertz wave through one-dimensional lamellar metallic grating // Optics Communications. 2011. V. 284. P. 2415–2419.
  17. Garcia N., Nieto-Vesperinas M.Theory of electromagnetic wave transmission through metallic grating of subwavelength slits // Journal of Optics A: Pure and Applied Optics. 2007. V. 9. P. 490–495.
  18. Alaverdyan S.A., Bokov S.I., Isaev V.M., Kabanov I.N., Komarov V.V., Kreniczkij A.P., Meshhanov V.P., Savushkin S.A., Jakunin A.S. Peredatochny'e xarakteristiki setochny'x polyarizatorov teragerczovogo diapazona // Dinamika slozhny'x sistem – XXI vek. 2012. № 4. S. 89–94.
  19. Yuan M., Huang X., Zhang X.Optimization of slit structures for transmission enhancement of THz wave // Microwave and Optical Technology Letters. 2013. V. 55. № 3. P. 559–561.
  20. Yang R., Rodriquez-Berral R., Medina F., Hao Y. Analytical model for the transmission of electromagnetic waves through arrays of slits in perfect conductors and lossy metal screens // Journal of Applied Physics. 2011. 109. P. 103–107.
  21. Medina F., Bigel G., Mesa F., Rodriguez-Berral R. Analytical modeling of structured 1D diffraction grating using a microwave engineering approach // Proc. of the 41st European Microwave Conf., 2011, Manchester, UK. P. 815–818.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio