Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Training neural network for an obstacle-avoiding autonomous mobile robot using reinforcement learning


R.A. Munasypov, G.A. Saitova, S.S. Moskvichev, T.R. Shakhmametev

In this article we present an approach to the obstacle-avoidance task in unknown environment for autonomous mobile robots using reinforcement learning neural network. Q-learning is one of reinforcement learning methods widely used in autonomous mobile robotics. This method is using to train a neural network controller of a mobile robot providing it with autonomous obstacle-avoiding behavior in unknown environment. Simulation results show that the method allows the robot to achieve an efficient locomotion strategy with no collisions with the environment.

  1. Borenstein J., Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots // IEEE Transactions on Systems, Man, and Cybernetics. 1989. V. 19. №. 5. Sept./Oct. P. 1179(1187.
  2. Stankevich L.A. Intellektual'ny'e roboty' i sistemy' upravleniya // Nejrokomp'yutery': razrabotka, primenenie. 2005. № 8-9. S. 54-66.
  3. Sutton R., Barto A. Reinforcement learning: An introduction. Adaptive Computation and Machine Learning series. MIT Press (Bradford Book). Cambridge. 1998. V. 18.
  4. Watkins J., Dayan P. Q-learning // Machine Learning. 1992. V. 8. P. 279-292.
  5. Onat A. Q-learning with recurrent neural networks as a controller for the inverted pendulum problem // The Fifth International Conference on Neural Information Processing, October 21-23. 1998. P. 83-840.
  6. Cervera E., del Pobil A.P. Sensor-based learning for practical planning of fine motions in robotics // Information Sciences. 2002. V. 145. Is. 1-2. P. 147-168.

May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio