Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Training neural network for an obstacle-avoiding autonomous mobile robot using reinforcement learning

Keywords:

R.A. Munasypov, G.A. Saitova, S.S. Moskvichev, T.R. Shakhmametev


In this article we present an approach to the obstacle-avoidance task in unknown environment for autonomous mobile robots using reinforcement learning neural network. Q-learning is one of reinforcement learning methods widely used in autonomous mobile robotics. This method is using to train a neural network controller of a mobile robot providing it with autonomous obstacle-avoiding behavior in unknown environment. Simulation results show that the method allows the robot to achieve an efficient locomotion strategy with no collisions with the environment.
References:

  1. Borenstein J., Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots // IEEE Transactions on Systems, Man, and Cybernetics. 1989. V. 19. №. 5. Sept./Oct. P. 1179(1187.
  2. Stankevich L.A. Intellektual'ny'e roboty' i sistemy' upravleniya // Nejrokomp'yutery': razrabotka, primenenie. 2005. № 8-9. S. 54-66.
  3. Sutton R., Barto A. Reinforcement learning: An introduction. Adaptive Computation and Machine Learning series. MIT Press (Bradford Book). Cambridge. 1998. V. 18.
  4. Watkins J., Dayan P. Q-learning // Machine Learning. 1992. V. 8. P. 279-292.
  5. Onat A. Q-learning with recurrent neural networks as a controller for the inverted pendulum problem // The Fifth International Conference on Neural Information Processing, October 21-23. 1998. P. 83-840.
  6. Cervera E., del Pobil A.P. Sensor-based learning for practical planning of fine motions in robotics // Information Sciences. 2002. V. 145. Is. 1-2. P. 147-168.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio