Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Approximate methods of an antenna synthesis and size minimization problems

Keywords:

K.V. Kozlov, V.F. Los’, I.O. Porochov, A.N. Schamanov


Evolutionary methods for a global optimum search and artificial neural networks, successfully used in the last ten years for a solution task synthesis of multiparametric antennas, are short enumerated. Using these algorithms in place of ones, based on a strong electromagnetic methods, allow considerably reduced of a computation time. Examples application these algorithms for antenna synthesis are specified. The demand to design small, lightweight mobile-communication, airborne and space devices increasing accordingly, create the need for optimal antennas. As is well known, miniaturizing an antenna will affect its radiation characteristics. Typical electrical requirements are on impedance bandwidth, gain, efficiency. Moreover, it is not always easy to feed a small antenna efficiently. In this paper, we examine different potential possibilities to make antennas smaller, offering with advances in technology of production nanomaterials, metamaterials, high-temperature superconductors and nanophotonic. A limitation of antennas bandwidth as they decrease in physical size also is succinctly reviewed. It is noted that the time dependent Poynting theorem accurately describes all possible electromagnetic fields and is the appropriate tool for antenna analysis. Simulation results of a tapered slot antenna with original feeding, got Ansoft HFSS and CST Microwave Studio software are noticed. An example of ultrawideband dipole, which feed by the coupled line is given also.
References:
  1. Kurochkin A.P. Nauchnaja shkola Pistolkorsa-Bakhrakha//Antenny. 2004. Vyp. 8-9 (87-88). S. 14 – 22.
  2. Balanis C.A.Modern antenna handbook. Chapter 32. Haupt R.L. Genetic algorithms for antennas. John Wiley & Sons. 2008. 1680 p.
  3. Villegas F.J., Cwik T., Rahmat-Samii Y. Manteghi M. A parallel e/m genetic-algorithm optimization (EGO) application for patch antenna design// IEEE Trans. on AP. 2004. V. 52, №9. R. 2424 – 2434.
  4. Hoorfar A. Evolutionary programming in electromagnetic optimization: a review// IEEE Trans. on AP. 2007. V.55. №.3. P. 523 – 537.
  5. Perez J.R., Basterrechea J. Comparison of different heuristic optimization methods for near-field antenna measurements// IEEE Trans. on AP. 2007. V.55. №3. R. 549 – 555.
  6. Gladkov L.A., Kurejjchik V.V., Kurejjchik V.M. Geneticheskie algoritmy. M.: Fizmatlit. 2010. 360 s.
  7. Singh U., Rumar H., Kamal T.S. Design of Yagi-Uda antenna using biogeography based optimization//IEEE Trans. on AP. 2010. V. 58. №10. P. 3375 – 3379.
  8. Datta T, Misra I. S. AComparative Study of Optimization Techniques in Adaptive Antenna Array Processing: The Bacteria-Foraging Algorithm and Particle-Swarm Optimization// IEEE Antennas and Propagation Magazine. 2009. V. 51. №6.Nov-Dec. P. 69 – 81.
  9. Robinson, J. And Rahmat-Samii, Y. Particle sworm optimization in electromagnetics// – IEEE Trans. on AP. 2004. V. 52. №2. P. 397 – 407.
  10. 10   Kozlov K.V., Los V.F.EHffektivnyjj algoritm optimizacii mnogoparametricheskikh zadach – metod roja pchjol// Antenny. 2005. Vyp. 4(95).S.18 – 21.
  11. Yang W.-C. F., Elsherbeni A. Electromagnetics and antenna optimization using Taguchi’s method. Synthesis lectures on computational electromagnetics #18. Morgan & Claypool publishers. 2007.
  12. Los V.F., Porokhov I.O. Optimizacija geometricheskikh parametrov antenn s ispolzovaniem modificirovannogo metoda Tehguchi// Antenny. 2010. Vyp. 1(152).S.38 – 44.
  13. Balanis C.A.Modern antenna handbook. Chapter 33. Christodolou C.G., Patnaik A. Neural networks for antennas. John Wiley & Sons. 2008. 1680 r.
  14. Patnaik A., Anagnostou D., Christodoulou C.G., Lyke J.C. Neurocomputational analysis of a multiband reconfigurable planar antenna// IEEE Trans. on AP. 2005. V. 53. №11. P. 3453 – 3457.
  15. Galushkin A.I., Kozlov K.V., Los V.F. i dr. Nejjrosetevojj sintez mikropoloskovojj antenny, vozbuzhdaemojj koaksialnym zondom// Antenny. 2007. Vyp. 9 (124). S. 35 – 40.
  16. Wu T.T., King R.W.P.The cilindrical antenna with nonreflecting resistive loading // IEEE Trans. on AP. 1965. V. 13. № 4. P. 369 – 373.
  17. Sljusar V. I. Nanoantenny: podkhody i perspektivy // EHlektronika NTB. 2009. №2. C.58 – 65.
  18. Burke P.J.An RF circuit model for carbon nanotubes //IEEE Trans. on Nanotechnology. 2003. V.2, no.1. P.55 – 58.
  19. Hanson G.W.Fundamental transmitting properties of carbon nanotubes antennas // IEEE Trans. on AP 2005. V. 53, №11. P. 3426 – 3435.
  20. Huang K.-C., Edwards D.J. Millimetre wave antennas for gigabit wireless communication. John Wiley & Sons. 2008. P. 275.
  21. Bystrov R.P., Guljaev JU.V.  i dr. Mikro – i nanoehlektronika primenitelno k sistemam radiolokacii i radiosvjazi // Uspekhi sovremennojj radioehlektroniki. 2010. №9. S. 11 – 50.
  22. Bakhrakh L.D., Zajjcev D.F., Sigov A.S. Novye aspekty primenenija nanotekhnologii v apparature AFAR: nano-fotonika i opto-MEMS // Antenny. 2009. Vyp. 6 (145). S. 84 – 95.
  23. Fradin A.Z. K voprosu o tochechnom izluchatele // ZHurnal tekhnicheskojj fiziki. 1939. T.9. Vyp. 13. S. 1161 – 1174.
  24. Chaloupka H., Klein N., Peiniger M.  et al.Miniaturized HTS microstrip patch antenna //IEEE Trans. on Microwave Theory and Technique. 1991. V. 39. №9. P. 1513 – 1521.
  25. Guseva L. Vysokotemperaturnye sverkhprovodniki. Perspektivy ispolzovanija v SVCH-komponentakh // EHlektronika NTB. 1999. №2. S.21 – 30.
  26. Vendik O.G., Vendik I.B., Kholodniak D.V. Applications of High-Temperature Superconductors in Microwave Integrated Circuits //Materials Physica and Mechanics Journal. 2000. V.2 (1). P. 15 – 24.
  27. CHerpak N.T. ,Velichko A.V. Vysokotemperaturnye sverkhprovodniki v mikrovolnovojj tekhnike // Uspekhi sovremennojj radioehlektroniki. 2000. №4. S. 3 – 47.
  28. Emeljanov V.JU. Mikroehlektronnye SVCH-komponenty na osnove vysokotemperaturnykh sverkhprovodnikov // Komponenty i tekhnologii. 2001. № 6 i 7. C. 65 – 79.
  29. Kostjuchenko S.A., Kocarenko V.A. Metody i ustrojjstva okhlazhdenija v krioehlektronike// Zarubezhnaja radioehlektronika. 1994. №7/8. S.3 – 10.
  30. Gavva D.S., Krikun E.V., Luchaninov A.I. Sovremennoe sostojanie tekhniki ehlektrodinamicheskikh ustrojjstv s nelinejjnymi kharakteristikami poverkhnostnogo impedansa //Problemy telekommunikacijj. 2011. Vyp. 1(3). S. 61 –81.
  31. Mitrokhin V.N. EHlektrodinamicheskie svojjstva metamateriala. Izd-vo MGTU im. N.EH. Baumana 2007.
  32. Guljaev JU.V., Lagarkov A.N., Nikitov S.A. Metamaterialy: fundamentalnye issledovanija i perspektivy primenenija //Vestnik Rossijjskojj Akademii Nauk. 2008. T.78. №5.S. 438 – 457.
  33. Bratchikov A.N. SVCH-ustrojjstva, izluchateli i FAR na osnove novykh metamaterialov i struktur// Antenny. 2009. Vyp.1(140). S.3 – 72.
  34. Panchenko B.A. Metamaterialy i sverkhnapravlennost antenn// Radiotekhnika i ehlektronika. 2009. T. 54. №3. S.302-307.
  35. Sljusar V.I. Metamaterialy v antennojj tekhnike: istorija i osnovnye principy. EHlektronika: NTB. 2009. №7. S 10– 19.
  36. Panchenko B.A., Gizatullin M.G. Nano-antenny. M.: Radiotekhnika. 2011. S. 215.
  37. SHorokhova E.A., Manakhova M.S. Antenny i izluchajushhie struktury SVCH-diapazona v iskusstvennykh kompozitnykh sredakh: istorija sozdanija, osnovnye tendencii i perspektivy razvitija// Antenny (v pechati).
  38. Sljusar V.I. 60 let teorii ehlektricheski malykh antenn. Nekotorye itogi// EHlektronika: NTB. 2006. №7.  S. 10– 19.
  39. Grimes D.M., Grimes C.A. Minimum Q of electrically small antennas: a critical review// Microwave and Optical Technology Letters. 2001. V.28ju №3. P. 172 – 177.
  40. Grimes D.M., Grimes C.A. Power in modal radiation fields: limits of the complex Poynting theorem and the potential for electrically small antennas// Journal of Electromagnetic Waves and Application. 1997. V.11. P. 1721 – 1747.
  41. Grimes D.M., Grimes C.A. Radiation Q of dipole-generated fields// Radio Science. 1999. V.34. P. 281 – 296.
  42. Collin R.E. Minimum Q of small antennas// Journal of Electromagnetic Waves and Application. 1998. V.12.  P. 1369 – 1393.
  43. Hansen R.C. Electrically small, superdirective, and superconducting antennas. John Wiley & Sons. 2006.
  44. Orsi R. Dockon’s CPLTM Technology: Microstrip compound antennas for commercial use// 2010. http://www.dockon.com/.
  45. SHamanov A.N. Sposob uvelichenija polosy chastot dipolja-chastotno-nezavisimyjj dipol// Antenny. 2001. Vyp. 1(47). S. 54 – 60.
  46. Bakhrakh L.D., Los V.F., SHamanov A.N. Sverkhshirokopolosnaja dipolnaja antenna// Radiofizika i radioastronomija. 2002. T.7. №4. S. 368 – 371.
  47. Schantz H. The Art and Science of ultrawideband antennas. Artech House. 2005. P. 331.
  48. Chen Z.N., Chia M.Y.W. Broadband Planar antennas. JohnWiley & Sons, 2006. P. 243.
  49. Bolov R.B., Kondrateva A.P., Kurochkin A.P., Los V.F., Privalova T.JU., JUkhanov JU.V. Sverkhshirokopolosnye izluchateli dlja skanirujushhejj videoimpulsnojj antennojj reshjotki// Antenny. 2010. Vyp. 2(153). S. 25 – 30.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio