Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Magnetoelectric memory cell using multiferroic nanostructures and magnetoelastic switching

Keywords:

N. Tiercelin – V.A. Kotelnikov Institute of Radioengineering and Electronics, 125009 Moscow, Russia. E-mail: nicolas.tiercelin@iemn.univ-lille1.fr
Y. Dusch – IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d’Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
V. Preobrazhensky – IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d’Ascq, France. E-mail: yannick.dusch@centraliens-lille.org; Wave Research Center, GPI RAS, 38 Vavilov str., Moscow, 119991, Russia
P. Pernod – IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d’Ascq, France. E-mail: yannick.dusch@centraliens-lille.org


We present here a concept of a memory cell called MELRAM based on a magnetic element with giant magnetostriction, embedded in a piezoelectric matrix. Two equilibrium orientations of magnetization are defined by combining uniaxial anisotropy together with a magnetic polarization in the hard axis direction. Using the piezoelectric (PZT) matrix, an anisotropic stress is created onto the magnetic element when applying a voltage across electrodes. Thanks to the inverse magnetostrictive effect, the effective anisotropy of the magnetic element is controlled by the applied voltage and used to switch magnetization from one state to the other. Micromagnetic simulations show the effect of applied stress on magnetization and theoretical feasibility of the device. Retrieval of information can be non-destructively made by GMR reading. Details of the principle, simulations and performance perspectives are discussed
References:

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio